Quantum mechanical scattering of photon and nucleus

From testwiki
Jump to navigation Jump to search

Template:Technical In pair production, a photon creates an electron positron pair. In the process of photons scattering in air (e.g. in lightning discharges), the most important interaction is the scattering of photons at the nuclei of atoms or molecules. The full quantum mechanical process of pair production can be described by the quadruply differential cross section given here:[1]

d4σ=Z2αfine3c2(2π)2|𝐩+||𝐩|dE+ω3dΩ+dΩdΦ|πͺ|4××[𝐩2sin2Θ(Ec|𝐩|cosΘ)2(4E+2c2πͺ2)𝐩+2sin2Θ+(E+c|𝐩+|cosΘ+)2(4E2c2πͺ2)+22ω2𝐩+2sin2Θ++𝐩2sin2Θ(E+c|𝐩+|cosΘ+)(Ec|𝐩|cosΘ)+2|𝐩+||𝐩|sinΘ+sinΘcosΦ(E+c|𝐩+|cosΘ+)(Ec|𝐩|cosΘ)(2E+2+2E2c2πͺ2)].

with

dΩ+=sinΘ+ dΘ+,dΩ=sinΘ dΘ.

This expression can be derived by using a quantum mechanical symmetry between pair production and Bremsstrahlung. Template:BrZ is the atomic number, αfine1/137 the fine structure constant, the reduced Planck constant and c the speed of light. The kinetic energies Ekin,+/ of the positron and electron relate to their total energies E+, and momenta 𝐩+, via

E+,=Ekin,+/+mec2=me2c4+𝐩+,2c2.

Conservation of energy yields

ω=E++E.

The momentum πͺ of the virtual photon between incident photon and nucleus is:

πͺ2=|𝐩+|2|𝐩|2(cω)2+2|𝐩+|cωcosΘ++2|𝐩|cωcosΘ2|𝐩+||𝐩|(cosΘ+cosΘ+sinΘ+sinΘcosΦ),

where the directions are given via:

Θ+=(𝐩+,𝐀),Θ=(𝐩,𝐀),Φ=Angle between the planes (𝐩+,𝐀) and (𝐩,𝐀),

where 𝐀 is the momentum of the incident photon.

In order to analyse the relation between the photon energy E+ and the emission angle Θ+ between photon and positron, KΓΆhn and Ebert integrated [2] the quadruply differential cross section over Θ and Φ. The double differential cross section is:

d2σ(E+,ω,Θ+)dE+dΩ+=j=16Ij

with

I1=2πA(Δ2(p))2+4p+2p2sin2Θ+×ln((Δ2(p))2+4p+2p2sin2Θ+(Δ2(p))2+4p+2p2sin2Θ+(Δ1(p)+Δ2(p))+Δ1(p)Δ2(p)(Δ2(p))24p+2p2sin2Θ+(Δ2(p))2+4p+2p2sin2Θ+(Δ1(p)Δ2(p))+Δ1(p)Δ2(p))×[1cΔ2(p)p(E+cp+cosΘ+)+p+2c2sin2Θ+(E+cp+cosΘ+)222ω2pΔ2(p)c(E+cp+cosΘ+)((Δ2(p))2+4p+2p2sin2Θ+)],I2=2πAcp(E+cp+cosΘ+)ln(E+pcEpc),I3=2πA(Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+×ln(((E+pc)(4p+2p2sin2Θ+(Epc)+(Δ1(p)+Δ2(p))((Δ2(p)E+Δ1(p)pc)(Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+)))((Epc)(4p+2p2sin2Θ+(Epc)+(Δ1(p)Δ2(p))((Δ2(p)E+Δ1(p)pc)(Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+)))1)×[c(Δ2(p)E+Δ1(p)pc)p(E+cp+cosΘ+)+[((Δ2(p))2+4p+2p2sin2Θ+)(E3+Epc)+pc(2((Δ1(p))24p+2p2sin2Θ+)Epc+Δ1(p)Δ2(p)(3E2+p2c2))][(Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+]1+[8p+2p2m2c4sin2Θ+(E+2+E2)22ω2p+2sin2Θ+pc(Δ2(p)E+Δ1(p)pc)+22ω2pm2c3(Δ2(p)E+Δ1(p)pc)][(E+cp+cosΘ+)((Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+)]1+4E+2p2(2(Δ2(p)E+Δ1(p)pc)24m2c4p+2p2sin2Θ+)(Δ1(p)E+Δ2(p)pc)((Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+)2],I4=4πApc(Δ2(p)E+Δ1(p)pc)(Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ++16πE+2p2A(Δ2(p)E+Δ1(p)pc)2((Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+)2,I5=4πA((Δ2(p))2+(Δ1(p))24p+2p2sin2Θ+)((Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+)×[2ω2p2E+cp+cosΘ+[E[2(Δ2(p))2((Δ2(p))2(Δ1(p))2)+8p+2p2sin2Θ+((Δ2(p))2+(Δ1(p))2)]+pc[2Δ1(p)Δ2(p)((Δ2(p))2(Δ1(p))2)+16Δ1(p)Δ2(p)p+2p2sin2Θ+]][(Δ2(p))2+4p+2p2sin2Θ+]1+22ω2p+2sin2Θ+(2Δ1(p)Δ2(p)pc+2(Δ2(p))2E+8p+2p2sin2Θ+E)E+cp+cosΘ+[2E+2p2{2((Δ2(p))2(Δ1(p))2)(Δ2(p)E+Δ1(p)pc)2+8p+2p2sin2Θ+[((Δ1(p))2+(Δ2(p))2)(E2+p2c2)+4Δ1(p)Δ2(p)Epc]}][(Δ2(p)E+Δ1(p)pc)2+4m2c4p+2p2sin2Θ+]18p+2p2sin2Θ+(E+2+E2)(Δ2(p)pc+Δ1(p)E)E+cp+cosΘ+],I6=16πE2p+2sin2Θ+A(E+cp+cosΘ+)2((Δ2(p))2+(Δ1(p))24p+2p2sin2Θ+)

and

A=Z2αfine3c2(2π)2|𝐩+||𝐩|ω3,Δ1(p):=|𝐩+|2|𝐩|2(cω)+2cω|𝐩+|cosΘ+,Δ2(p):=2cω|𝐩i|2|𝐩+||𝐩|cosΘ++2.

This cross section can be applied in Monte Carlo simulations. An analysis of this expression shows that positrons are mainly emitted in the direction of the incident photon.

References

Template:Reflist

  1. ↑ Bethe, H.A., Heitler, W., 1934. On the stopping of fast particles and on the creation of positive electrons. Proc. Phys. Soc. Lond. 146, 83–112
  2. ↑ Koehn, C., Ebert, U., Angular distribution of Bremsstrahlung photons and of positrons for calculations of terrestrial gamma-ray flashes and positron beams, Atmos. Res. (2014), vol. 135-136, pp. 432-465