Polynomial hyperelastic model

From testwiki
Jump to navigation Jump to search

{{#invoke:sidebar|collapsible | name = Continuum mechanics | class = plainlist | pretitle = Part of a series on | title = Continuum mechanics |listtitlestyle = background:transparent;border-top:1px solid #aaa;text-align:center; | expanded = Solid mechanics | image = J=Ddφdx | caption = Fick's laws of diffusion


| list1name = laws | list1title = Laws | list1 =

  Template:Sidebar


| list2name = solid | list2title = Solid mechanics | list2 = Template:Startflatlist

Template:Endflatlist


| list3name = fluid | list3title = Fluid mechanics | list3 =

  Template:Sidebar


| list4name = rheology | list4title = Rheology | list4 =

  Template:Sidebar


| list5name = scientists | list5title = Scientists | list5 = Template:Startflatlist

Template:Endflatlist

}} The polynomial hyperelastic material model [1] is a phenomenological model of rubber elasticity. In this model, the strain energy density function is of the form of a polynomial in the two invariants I1,I2 of the left Cauchy-Green deformation tensor.

The strain energy density function for the polynomial model is [1]

W=i,j=0nCij(I13)i(I23)j

where Cij are material constants and C00=0.

For compressible materials, a dependence of volume is added

W=i,j=0nCij(I¯13)i(I¯23)j+k=1m1Dk(J1)2k

where

I¯1=J2/3I1;I1=λ12+λ22+λ32;J=det(𝑭)I¯2=J4/3I2;I2=λ12λ22+λ22λ32+λ32λ12

In the limit where C01=C11=0, the polynomial model reduces to the Neo-Hookean solid model. For a compressible Mooney-Rivlin material n=1,C01=C2,C11=0,C10=C1,m=1 and we have

W=C01(I¯23)+C10(I¯13)+1D1(J1)2

References

  1. 1.0 1.1 Rivlin, R. S. and Saunders, D. W., 1951, Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Phi. Trans. Royal Soc. London Series A, 243(865), pp. 251-288.

See also