Polynomial SOS
In mathematics, a form (i.e. a homogeneous polynomial) h(x) of degree 2m in the real n-dimensional vector x is sum of squares of forms (SOS) if and only if there exist forms of degree m such that
Every form that is SOS is also a positive polynomial, and although the converse is not always true, Hilbert proved that for n = 2, 2m = 2, or n = 3 and 2m = 4 a form is SOS if and only if it is positive.[1] The same is also valid for the analog problem on positive symmetric forms.[2][3]
Although not every form can be represented as SOS, explicit sufficient conditions for a form to be SOS have been found.[4][5] Moreover, every real nonnegative form can be approximated as closely as desired (in the -norm of its coefficient vector) by a sequence of forms that are SOS.[6]
Square matricial representation (SMR)
To establish whether a form Template:Math is SOS amounts to solving a convex optimization problem. Indeed, any Template:Math can be written as where is a vector containing a base for the forms of degree m in x (such as all monomials of degree m in x), the prime ′ denotes the transpose, H is any symmetric matrix satisfying and is a linear parameterization of the linear space
The dimension of the vector is given by whereas the dimension of the vector is given by
Then, Template:Math is SOS if and only if there exists a vector such that meaning that the matrix is positive-semidefinite. This is a linear matrix inequality (LMI) feasibility test, which is a convex optimization problem. The expression was introduced in [7] with the name square matricial representation (SMR) in order to establish whether a form is SOS via an LMI. This representation is also known as Gram matrix.[8]
Examples
- Consider the form of degree 4 in two variables . We have Since there exists α such that , namely , it follows that h(x) is SOS.
- Consider the form of degree 4 in three variables . We have Since for , it follows that Template:Math is SOS.
Generalizations
Matrix SOS
A matrix form F(x) (i.e., a matrix whose entries are forms) of dimension r and degree 2m in the real n-dimensional vector x is SOS if and only if there exist matrix forms of degree m such that
Matrix SMR
To establish whether a matrix form F(x) is SOS amounts to solving a convex optimization problem. Indeed, similarly to the scalar case any F(x) can be written according to the SMR as where is the Kronecker product of matrices, H is any symmetric matrix satisfying and is a linear parameterization of the linear space
The dimension of the vector is given by
Then, Template:Math is SOS if and only if there exists a vector such that the following LMI holds:
The expression was introduced in [9] in order to establish whether a matrix form is SOS via an LMI.
Noncommutative polynomial SOS
Consider the free algebra R⟨X⟩ generated by the n noncommuting letters X = (X1, ..., Xn) and equipped with the involution T, such that T fixes R and X1, ..., Xn and reverses words formed by X1, ..., Xn. By analogy with the commutative case, the noncommutative symmetric polynomials f are the noncommutative polynomials of the form Template:Math. When any real matrix of any dimension r × r is evaluated at a symmetric noncommutative polynomial f results in a positive semi-definite matrix, f is said to be matrix-positive.
A noncommutative polynomial is SOS if there exists noncommutative polynomials such that
Surprisingly, in the noncommutative scenario a noncommutative polynomial is SOS if and only if it is matrix-positive.[10] Moreover, there exist algorithms available to decompose matrix-positive polynomials in sum of squares of noncommutative polynomials.[11]