Orders of magnitude (energy)

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Use dmy dates This list compares various energies in joules (J), organized by order of magnitude. Template:Clear

Below 1 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
10−34   Template:Val Energy of a photon with a frequency of 1 hertz.[1]
  Template:Val Average kinetic energy of translational motion of a molecule at the lowest temperature reached (38 picokelvin[2] Template:As of)
10−30Template:Anchor quecto- (qJ)
10−28   6.6×10−28Template:NbspJ Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3]
10−27Template:Anchor ronto- (rJ)
10−24Template:Anchor yocto- (yJ) 1.6×10−24Template:NbspJ Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4][5]
10−23   2×10−23Template:NbspJ Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7]
10−22   2–3000×10−22Template:NbspJ Energy of infrared light photons[8]
10−21Template:Anchor zepto- (zJ) 1.7×10−21Template:NbspJ 1Template:NbspkJ/mol, converted to energy per molecule[9]
2.1×10−21Template:NbspJ Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10]
2.856×10−21Template:NbspJ By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information
3–7×10−21Template:NbspJ Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12]
4.1×10−21Template:NbspJ The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13]
7–22×10−21Template:NbspJ Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14]
10−20   4.5×10−20Template:NbspJ Upper bound of the mass–energy of a neutrino in particle physics (0.28 eV)[15][16]
10−19   Template:Val 1 electronvolt (eV) by definition. This value is exact as a result of the 2019 revision of SI units.[17]
3–5×10−19Template:NbspJ Energy range of photons in visible light (≈1.6–3.1 eV)[18][19]
3–14×10−19Template:NbspJ Energy of a covalent bond (2–9 eV)[11][20]
5–200×10−19Template:NbspJ Energy of ultraviolet light photons[8]
10−18Template:Anchor atto- (aJ) 1.78×10−18Template:NbspJ Bond dissociation energy for the carbon monoxide (CO) triple bond, alternatively stated: 1072 kJ/mol; 11.11eV per molecule.[21]

This is the strongest chemical bond known.

2.18×10−18Template:NbspJ Ground state ionization energy of hydrogen (13.6 eV)
10−17   2–2000×10−17Template:NbspJ Energy range of X-ray photons[8]
10−16      
10−15Template:Anchor femto- (fJ) 3 × 10−15Template:NbspJ Average kinetic energy of one human red blood cell.[22][23][24]
10−14   1×10−14Template:NbspJ Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[25][26][27]
> 2×10−14Template:NbspJ Energy of gamma ray photons[8]
2.7×10−14Template:NbspJ Upper bound of the mass–energy of a muon neutrino[28][29]
8.2×10−14Template:NbspJ Template:AnchorRest mass–energy of an electron[30] (0.511 MeV)[31]
10−13   1.6×10−13Template:NbspJ 1 megaelectronvolt (MeV)[32]
2.3×10−13Template:NbspJ Energy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV)[33]
10−12Template:Anchor pico- (pJ) 2.3×10−12Template:NbspJ Kinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV)[34][35]
10−11   3.4×10−11Template:NbspJ Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[36][37]
10−10   1.492×10−10Template:NbspJ Mass-energy equivalent of 1 Da[38] (931.5 MeV)[39]
1.503×10−10Template:NbspJ Rest mass–energy of a proton[40] (938.3 MeV)[41]
1.505×10−10Template:NbspJ Rest mass–energy of a neutron[42] (939.6 MeV)[43]
1.6×10−10Template:NbspJ 1 gigaelectronvolt (GeV)[44]
3×10−10Template:NbspJ Rest mass–energy of a deuteron[45]
6×10−10Template:NbspJ Rest mass–energy of an alpha particle[46]
7×10−10Template:NbspJ Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[47]
10−9Template:Anchor nano- (nJ) 1.6×10−9Template:NbspJ 10 GeV[48]
8×10−9Template:NbspJ Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[49][50]
10−8   1.3×10−8Template:NbspJ Mass–energy of a W boson (80.4 GeV)[51][52]
1.5×10−8Template:NbspJ Mass–energy of a Z boson (91.2 GeV)[53][54]
1.6×10−8Template:NbspJ 100 GeV[55]
2×10−8Template:NbspJ Mass–energy of the Higgs Boson (125.1 GeV)[56]
6.4×10−8Template:NbspJ Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[57][58]
10−7   1×10−7Template:NbspJ ≡ 1 erg[59]
1.6×10−7Template:NbspJ 1 TeV (teraelectronvolt),[60] about the kinetic energy of a flying mosquito[61]
10−6Template:Anchor micro- (μJ) 1.04×10−6Template:NbspJ Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[62][63]
10−5      
10−4   1.0×10−4Template:NbspJ Energy released by a typical radioluminescent wristwatch in 1 hour[64][65] (1 μCi × 4.871 MeV × 1 hr)
10−3Template:Anchor milli- (mJ) 3.0×10−3Template:NbspJ Energy released by a P100 atomic battery in 1 hour[66] (2.4 V × 350 nA × 1 hr)
10−2Template:Anchor centi- (cJ) 4.0×10−2Template:NbspJ Use of a typical LED for 1 second[67] (2.0 V × 20 mA × 1 s)
10−1Template:Anchor deci- (dJ) 1.1×10−1Template:NbspJ Energy of an American half-dollar falling 1 metre[68][69]

1 to 105 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
100 J 1Template:NbspJ ≡ 1 N·m (newtonmetre)
1Template:NbspJ ≡ 1 W·s (watt-second)
1Template:NbspJ Kinetic energy produced as an extra small apple (~100 grams[70]) falls 1 meter against Earth's gravity[71]
1Template:NbspJ Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[72]
1.4Template:NbspJ ≈ 1 ft·lbf (foot-pound force)[59]
4.184Template:NbspJ ≡ 1 thermochemical calorie (small calorie)[59]
4.1868Template:NbspJ ≡ 1 International (Steam) Table calorie[73]
8Template:NbspJ Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[74][75]
101Template:Anchor deca- (daJ) 1×101Template:NbspJ Flash energy of a typical pocket camera electronic flash capacitor Template:Nowrap @ Template:Nowrap[76][77]
5×101Template:NbspJ The most energetic cosmic ray ever detected.[78] Most likely a single proton traveling only very slightly slower than the speed of light.[79]
102Template:Anchor hecto- (hJ) 1.25×102Template:NbspJ Kinetic energy of a regulation (standard) baseball (5.1 oz / 145 g)[80] thrown at 93 mph / 150 km/h (MLB average pitch speed).[81]
1.5×102 - 3.6×102Template:NbspJ Energy delivered by a biphasic external electric shock (defibrillation), usually during adult cardiopulmonary resuscitation for cardiac arrest.
3×102Template:NbspJ Energy of a lethal dose of X-rays[82]
3×102Template:NbspJ Kinetic energy of an average person jumping as high as they can[83][84][85]
3.3×102Template:NbspJ Energy to melt 1 g of ice[86]
> 3.6×102Template:NbspJ Kinetic energy of 800 gram[87] standard men's javelin thrown at > 30 m/s[88] by elite javelin throwers[89]
5–20×102Template:NbspJ Energy output of a typical photography studio strobe light in a single flash[90]
6×102Template:NbspJ Use of a 10-watt flashlight for 1 minute
7.5×102Template:NbspJ A power of 1 horsepower applied for 1 second[59]
7.8×102Template:NbspJ Kinetic energy of 7.26 kg[91] standard men's shot thrown at 14.7 m/sTemplate:Citation needed by the world record holder Randy Barnes[92]
8.01×102Template:NbspJ Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)
103Template:Anchor kilo- (kJ) 1.1×103Template:NbspJ ≈ 1 British thermal unit (BTU), depending on the temperature[59]
1.4×103Template:NbspJ Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[93]
2.3×103Template:NbspJ Energy to vaporize 1 g of water into steam[94]
3×103Template:NbspJ Lorentz force can crusher pinch[95]
3.4×103Template:NbspJ Kinetic energy of world-record men's hammer throw (7.26 kg[96] thrown at 30.7 m/s[97] in 1986)[98]
3.6×103Template:NbspJ ≡ 1 W·h (watt-hour)[59]
4.2×103Template:NbspJ Energy released by explosion of 1 gram of TNT[59][99]
4.2×103Template:NbspJ ≈ 1 food Calorie (large calorie)
~7×103Template:NbspJ Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[100]
8.5×103Template:NbspJ Kinetic energy of a regulation baseball thrown at the speed of sound (343Template:Nbspm/s = 767Template:Nbspmph = 1,235Template:Nbspkm/h. Air, 20°C).[101]
9×103Template:NbspJ Energy in an alkaline AA battery[102]
104   1.7×104Template:NbspJ Energy released by the metabolism of 1 gram of carbohydrates[103] or protein[104]
3.8×104Template:NbspJ Energy released by the metabolism of 1 gram of fat[105]
4–5×104Template:NbspJ Energy released by the combustion of 1 gram of gasoline[106]
5×104Template:NbspJ Kinetic energy of 1 gram of matter moving at 10 km/s[107]
105   Template:Nowrap Kinetic energy of an automobile at highway speeds (1 to 5 tons[108] at Template:Nowrap or Template:Nowrap)[109]
5×105Template:NbspJ Kinetic energy of 1 gram of a meteor hitting Earth[110]

106 to 1011 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
106Template:Anchor mega- (MJ) 1×106Template:NbspJ Kinetic energy of a 2 tonne[108] vehicle at 32 metres per second (115 km/h or 72 mph)[111]
1.2×106Template:NbspJ Approximate food energy of a snack such as a Snickers bar (280 food calories)[112]
3.6×106Template:NbspJ = 1 kWh (kilowatt-hour) (used for electricity)[59]
4.2×106Template:NbspJ Energy released by explosion of 1 kilogram of TNT[59][99]
6.1×106Template:NbspJ Kinetic energy of the 4 kg tungsten APFSDS penetrator after being fired from a 120mm KE-W A1 cartridge with a nominal muzzle velocity of 1740 m/s.[113][114]
8.4×106Template:NbspJ Recommended food energy intake per day for a moderately active woman (2000 food calories)[115][116]
9.1×106Template:NbspJ Kinetic energy of a regulation baseball thrown at Earth's escape velocity (First cosmic velocity ≈ 11.186 km/s = 25,020 mph = 40,270 km/h).[117]
107   1×107Template:NbspJ Kinetic energy of the armor-piercing round fired by the ISU-152 assault gun[118]Template:Citation needed
1.1×107Template:NbspJ Recommended food energy intake per day for a moderately active man (2600 food calories)[115][119]
3.3×107Template:NbspJ Kinetic energy of a 23 lb projectile fired by the Navy's mach 8 railgun.[120]
3.7×107Template:NbspJ $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[121][122][123]
4×107Template:NbspJ Energy from the combustion of 1 cubic meter of natural gas[124]
4.2×107Template:NbspJ Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[125]
6.3×107Template:NbspJ Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[126]
9×107Template:NbspJ Total mass-energy of 1 microgram of matter (25 kWh)
108   1×108Template:NbspJ Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)Template:Citation needed
1.1×108Template:NbspJ ≈ 1 therm, depending on the temperature[59]
1.1×108Template:NbspJ ≈ 1 Tour de France, or ~90 hours[127] ridden at 5 W/kg[128] by a 65 kg rider[129]
7.3×108Template:NbspJ ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)Template:Citation needed
109Template:Anchor giga- (GJ) 1×109Template:NbspJ Energy in an average lightning bolt[130] (thunder)
1.1×109Template:NbspJ Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[131]
1.2×109Template:NbspJ Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109Template:NbspJ Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[132][133]
2×109Template:NbspJ Energy of an ordinary Template:Nowrap gasoline tank of a car.[106][134][135]
2×109Template:NbspJ Unit of energy in Planck units,[136] roughly the diesel tank energy of a mid-sized truck.
2.49×109Template:NbspJ Kinetic energy carried by American Airlines Flight 11 (767-200ER) at the moment of impact[137][138] with WTC 1, 8:46:30 A.M.[138][139][137](EDT UTC−4:00), September 11, 2001
3×109Template:NbspJ Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109Template:NbspJ Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[140][141]
3.6×109Template:NbspJ = 1 MW·h (megawatt-hour)
4.2×109Template:NbspJ Energy released by explosion of 1 ton of TNT.
4.5×109Template:NbspJ Average annual energy usage of a standard refrigerator[142][143]
6.1×109Template:NbspJ ≈ 1 bboe (barrel of oil equivalent)[144]
1010   1.9×1010Template:NbspJ Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s)
4.2×1010Template:NbspJ ≈ 1 toe (ton of oil equivalent)[144]
4.6×1010Template:NbspJ Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[145][146]
7.3×1010Template:NbspJ Energy consumed by the average U.S. automobile in the year 2000[147][148][149]
8.6×1010Template:NbspJ ≈ 1 MW·d (megawatt-day), used in the context of power plants (24 MW·h)[150]
8.8×1010Template:NbspJ Total energy released in the nuclear fission of one gram of uranium-235[36][37][151]
9×1010Template:NbspJ Total mass-energy of 1 milligram of matter (25 MW·h)
1011   1.1×1011Template:NbspJ Kinetic energy of a regulation baseball thrown at lightning speed (120 km/s = 270,000 mph = 435,000 km/h).[152]
2.4×1011Template:NbspJ Approximate food energy consumed by an average human in an 80-year lifetime.[153]

1012 to 1017 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
1012Template:Anchor tera- (TJ) 1.85×1012Template:NbspJ Gravitational potential energy of the Twin Towers, combined, accumulated throughout their construction and released during the collapse of the complex.[154][155][156]
3.4×1012Template:NbspJ Maximum fuel energy of an Airbus A330-300 (97,530 liters[157] of Jet A-1[158])[159]
3.6×1012Template:NbspJ 1 GW·h (gigawatt-hour)[160]
4×1012Template:NbspJ Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[161] thermal efficiency of reactor[162][163]
4.2×1012Template:NbspJ Chemical energy released by the detonation of 1 kiloton of TNT[59][164]
6.4×1012Template:NbspJ Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[165] of Jet A-1[158])[166]
1013   1.1×1013Template:NbspJ Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[167] of Jet A-1[158])[168]
1.2×1013Template:NbspJ Orbital kinetic energy of the International Space Station (417 tonnes[169] at 7.7 km/s[170])[171]
1.20×1013Template:NbspJ Orbital kinetic energy of the Parker Solar Probe as it dives deep into the Sun's gravity well in December 2024, reaching a peak velocity of 430,000 mph.[172][173][174]
6.3×1013Template:NbspJ Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[175][176]
9×1013Template:NbspJ Theoretical total mass–energy of 1 gram of matter (25 GW·h) [177]
1014   1.8×1014Template:NbspJ Energy released by annihilation of 1 gram of antimatter and matter (50 GW·h)
3.75×1014Template:NbspJ Total energy released by the Chelyabinsk meteor.[178]
6×1014Template:NbspJ Energy released by an average hurricane per day[179]
1015 peta- (PJ) Template:Anchor > 1015Template:NbspJ Energy released by a severe thunderstorm[180]
1×1015Template:NbspJ Yearly electricity consumption in Greenland as of 2008[181][182]
4.2×1015Template:NbspJ Energy released by explosion of 1 megaton of TNT[59][183]
1016   1×1016Template:NbspJ Estimated impact energy released in forming Meteor CraterTemplate:Citation needed
1.1×1016Template:NbspJ Yearly electricity consumption in Mongolia as of 2010[181][184]
6.3×1016Template:NbspJ Yield of Castle Bravo, the most powerful nuclear weapon tested by the United States[185]
7.9×1016Template:NbspJ Kinetic energy of a regulation baseball thrown at 99% the speed of light (KE = mc^2 × [γ-1], where the Lorentz factor γ ≈ 7.09).[186]
9×1016Template:NbspJ Mass–energy of 1 kilogram of antimatter (or matter)[187]
1017   1.4×1017Template:NbspJ Seismic energy released by the 2004 Indian Ocean earthquake[188]
1.7×1017Template:NbspJ Total energy from the Sun that strikes the face of the Earth each second[189]
2.1×1017Template:NbspJ Yield of the Tsar Bomba, the most powerful nuclear weapon ever tested (50 megatons)[190][191]
2.552×1017Template:NbspJ Total energy of the 2022 Hunga Tonga–Hunga Haʻapai eruption[192][193]
4.2×1017Template:NbspJ Yearly electricity consumption of Norway as of 2008[181][194]
4.516×1017Template:NbspJ Energy needed to accelerate one ton of mass to 0.1c (~30,000 km/s)[195]
8.4x1017Template:NbspJ Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[196][197][198]

1018 to 1023 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
1018 exa- (EJ) Template:Anchor 9.4×1018Template:NbspJ Worldwide nuclear-powered electricity output in 2023.[199][200]
1019   1×1019Template:NbspJ Thermal energy released by the 1991 Pinatubo eruption[201]
1.1×1019Template:NbspJ Seismic energy released by the 1960 Valdivia Earthquake[201]
1.2×1019Template:NbspJ Explosive yield of global nuclear arsenal[202] (2.86 Gigatons)
1.4×1019Template:NbspJ Yearly electricity consumption in the U.S. as of 2009[181][203]
1.4×1019J Yearly electricity production in the U.S. as of 2009[204][205]
5×1019Template:NbspJ Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[179]
6.4×1019Template:NbspJ Yearly electricity consumption of the world Template:As of[206][207]
6.8×1019Template:NbspJ Yearly electricity generation of the world Template:As of[206][208]
1020   1.4×1020Template:NbspJ Total energy released in the 1815 Mount Tambora eruption[209]
2.33×1020Template:NbspJ Kinetic energy of a carbonaceous chondrite meteor 1 km in diameter striking Earth's surface at 20 km/s.[210] Such an impact occurs every ~500,000 years.[211]
2.4×1020Template:NbspJ Total latent heat energy released by Hurricane Katrina[212]
5×1020Template:NbspJ Total world annual energy consumption in 2010[213][214]
6.2×1020Template:NbspJ World primary energy generation in 2023 (620 EJ).[215][216]
8×1020Template:NbspJ Estimated global uranium resources for generating electricity 2005[217][218][219][220]
1021 zetta- (ZJ) Template:Anchor 6.9×1021Template:NbspJ Estimated energy contained in the world's natural gas reserves as of 2010[213][221]
7.0×1021Template:NbspJ Thermal energy released by the Toba eruption[201]
7.9×1021Template:NbspJ Estimated energy contained in the world's petroleum reserves as of 2010[213][222]
9.3×1021Template:NbspJ Annual net uptake of thermal energy by the global ocean during 2003-2018[223]
1022   1.2×1022J Seismic energy of a magnitude 11 earthquake on Earth (M 11)[224]
1.5×1022J Total energy from the Sun that strikes the face of the Earth each day[189][225]
1.94×1022J Impact event that formed the Siljan Ring, the largest impact structure in Europe[226]
2.4×1022Template:NbspJ Estimated energy contained in the world's coal reserves as of 2010[213][227]
2.9×1022Template:NbspJ Identified global uranium-238 resources using fast reactor technology[217]
3.9×1022Template:NbspJ Estimated energy contained in the world's fossil fuel reserves as of 2010[213][228]
8.03×1022Template:NbspJ Total energy of the 2004 Indian Ocean earthquake[229]
1023   1.5×1023Template:NbspJ Total energy of the 1960 Valdivia earthquake[230]
2.2×1023Template:NbspJ Total global uranium-238 resources using fast reactor technology[217]
3×1023Template:NbspJ The energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[231]

Over 1024 J

Template:Anchor

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
1024 yotta- (YJ) 2.31×1024Template:NbspJ Total energy of the Sudbury impact event[232]
2.69×1024Template:NbspJ Rotational energy of Venus, which has a sidereal period of (-)243 Earth days.[233][234][235]
3.8×1024Template:NbspJ Radiative heat energy released from the Earth’s surface each year[201]
5.5×1024Template:NbspJ Total energy from the Sun that strikes the face of the Earth each year[189][236]
1025   4×1025Template:NbspJ Total energy of the Carrington Event in 1859[237]
1026   >1026J Estimated energy of early Archean asteroid impacts[238]
3.2×1026Template:NbspJ Bolometric energy of Proxima Centauri's superflare in March 2016 (10^33.5 erg). In one year, potentially five similar superflares erupts from the surface of the red dwarf.[239]
3.828×1026Template:NbspJ Total radiative energy output of the Sun each second[240]
1027 ronna- (RJ) 1×1027Template:NbspJ Estimated energy released by the impact that created the Caloris basin on Mercury[241]
1×1027Template:NbspJ Upper limit of the most energetic solar flares possible (X1000)[242]
5.19×1027Template:NbspJ Thermal input necessary to evaporate all surface water on Earth.[243][244][245] Note that the evaporated water still remains on Earth, merely in vapor form.
4.2×1027Template:NbspJ Kinetic energy of a regulation baseball thrown at the speed of the Oh-My-God particle, itself a cosmic ray proton with the kinetic energy of a baseball thrown at 60Template:Nbspmph (~50Template:NbspJ).[246]
1028 3.8×1028Template:NbspJ Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[247][248]
7×1028Template:NbspJ Total energy of the stellar superflare from V1355 Orionis[249][250]
1029   2.1×1029Template:NbspJ Rotational energy of the Earth[251][252][253]
1030 quetta- (QJ) 1.79×1030Template:NbspJ Rough estimate of the gravitational binding energy of Mercury.[254]
1031   2×1031Template:NbspJ The Theia Impact, the most energetic event ever in Earth's history[255][256]
 3.3×1031J Total energy output of the Sun each day[240][257]
1032   1.71×1032Template:NbspJ Gravitational binding energy of the Earth[258]
3.10×1032Template:NbspJ Yearly energy output of Sirius B, the ultra-dense and Earth-sized white dwarf companion of Sirius, the Dog Star. It has a surface temperature of about 25,200 K.[259]
1033   2.7×1033Template:NbspJ Earth's kinetic energy at perihelion in its orbit around the Sun[260][261]
1034   1.2×1034Template:NbspJ Total energy output of the Sun each year[240][262]
1035 3.5×1035Template:NbspJ The most energetic stellar superflare to date (V2487 Ophiuchi)[263]
1038 7.53×1038Template:NbspJ Baryonic (ordinary) mass-energy contained in a volume of one cubic light-year, on average.[264][265]
1039   2–5×1039 J Energy of the giant flare (starquake) released by SGR 1806-20[266][267][268]
6.602×1039 JTemplate:Nbsp Theoretical total mass–energy of the Moon[269][270]
1040   1.61×1040Template:NbspJ Baryonic mass-energy contained in a volume of one cubic parsec, on average.[265][271]
1041   2.276×1041Template:NbspJ Gravitational binding energy of the Sun[272]
5.3675×1041Template:NbspJ Theoretical total mass–energy of the Earth[273][274]
1043   5×1043Template:NbspJ Total energy of all gamma rays in a typical gamma-ray burst if collimated[275][276]
>1043 J Total energy in a typical fast blue optical transient (FBOT)[277]
1044   ~1044 J Average value of a Tidal Disruption Event (TDE) in optical/UV bands[278]
~1044 J Estimated kinetic energy released by FBOT CSS161010[279]
~1044Template:NbspJ Total energy released in a typical supernova,[280][281] sometimes referred to as a foe.
1.233×1044Template:NbspJ Approximate lifetime energy output of the Sun.[282][283]
Template:Val Total energy of a typical gamma-ray burst if collimated[280]
1045   ~1045 J Estimated energy released in a hypernova and pair instability supernova[284]
1045 J Energy released by the energetic supernova, SN 2016aps[285][286]
1.7–1.9×1045 J Energy released by hypernova ASASSN-15lh[287]
2.3×1045 J Energy released by the energetic supernova PS1-10adi[288][289]
>1045 J Estimated energy of a magnetorotational hypernova[290]
>1045Template:NbspJ Total energy (energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst if collimated[291][292][293][294][295]
1046 >1046Template:NbspJ Estimated energy in theoretical quark-novae[296]
~1046Template:NbspJ Upper limit of the total energy of a supernova[297][298]
1.5×1046Template:NbspJ Total energy of the most energetic optical non-quasar transient, AT2021lwx[299]
1047   1045-47 J Estimated energy of stellar mass rotational black holes by vacuum polarization in an electromagnetic field[300][301]
1047 J Total energy of a very energetic and relativistic jetted Tidal Disruption Event (TDE)[302]
~1047 J Upper limit of collimated- corrected total energy of a gamma-ray burst[303][304][305]
1.8×1047Template:NbspJ Theoretical total mass–energy of the Sun[306][307]
5.4×1047Template:NbspJ Mass–energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[308]
8.6×1047Template:NbspJ Mass–energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)[309]
8.8×1047Template:NbspJ GRB 080916C – formerly the most powerful gamma-ray burst (GRB) ever recorded – total/true[310] isotropic energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the Sun's mass turned to energy[311]
1048 1048 J Estimated energy of a supermassive Population III star supernova, denominated "General Relativistic Instability Supernova."[312][313]
~1.2×1048 J Approximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detected[314][315][316][317][318]
1.2–3×1048 J GRB 221009A – the most powerful gamma-ray burst (GRB) ever recorded – total/true[310][319] isotropic energy output estimated at 1.2–3 × 1048 joules (1.2–3 × 1055 erg)[320][321][322]
1050 ≳1050 J Upper limit of isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).[323]
1053   >1053 J Mechanical energy of very energetic so-called "quasar tsunamis"[324][325]
6×1053Template:NbspJ Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[326]
7.65×1053Template:NbspJ Mass-energy of Sagittarius A*, Milky Way's central supermassive black hole[327][328]
1054   3×1054Template:NbspJ Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[329]
1055   >1055Template:NbspJ Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,[330] Ophiucus Supercluster Explosion[331] and supermassive black holes mergings[332][333]
1057 ~1057 J Estimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales[334][335]
~2×1057 J Estimated thermal energy of the Bullet Cluster of galaxies[336]
7.3×1057 J Mass-energy equivalent of the ultramassive black hole TON 618, an extremely luminous quasar / active galactic nucleus (AGN).[337][338]
1058   ~1058 J Estimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings[339]
4×1058Template:NbspJ Visible mass–energy in our galaxy, the Milky Way[340][341]
1059   1×1059Template:NbspJ Total mass–energy of our galaxy, the Milky Way, including dark matter and dark energy[342][343]
1.4×1059Template:NbspJ Mass-energy of the Andromeda galaxy (M31), ~0.8 trillion solar masses.[344][345]
1062   1–2×1062Template:NbspJ Total mass–energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[346]
1070 1.462×1070Template:NbspJ Rough estimate of total mass–energy of ordinary matter (atoms; baryons) present in the observable universe.[347][348][265]
1071 3.177×1071Template:NbspJ Rough estimate of total mass-energy within our observable universe, accounting for all forms of matter and energy.[349][265]

SI multiples

Template:SI multiples Template:SI unit lowercase

See also

Template:Portal

Notes

Template:Reflist

Template:Orders of magnitude

  1. Template:Cite web
  2. Calculated: KETemplate:Sub = (3/2) × Boltzmann constant × Temperature
  3. Calculated: ETemplate:Sub = hν = 6.626Template:ETemplate:NbspJ-s × 1Template:E Hz = 6.6Template:ETemplate:NbspJ. In eV: 6.6Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 4.1Template:E eV.
  4. Template:Cite web
  5. Calculated: ETemplate:Sub = hν = 6.626Template:ETemplate:NbspJ-s × 2.45Template:E Hz = 1.62Template:ETemplate:NbspJ. In eV: 1.62Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 1.0Template:E eV.
  6. Template:Cite web
  7. Calculated: KETemplate:Sub ≈ (3/2) × T × 1.38Template:E = (3/2) × 1 × 1.38Template:E ≈ 2.07Template:ETemplate:NbspJ
  8. 8.0 8.1 8.2 8.3 Template:Cite web
  9. Calculated: 1Template:ETemplate:NbspJ / 6.022Template:E entities per mole = 1.7Template:ETemplate:NbspJ per entity
  10. Calculated: 1.381Template:ETemplate:NbspJ/K × 298.15 K / 2 = 2.1Template:ETemplate:NbspJ
  11. 11.0 11.1 11.2 Template:Cite web
  12. Calculated: 2 to 4Template:NbspkJ/mol = 2Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 3.3Template:ETemplate:NbspJ. In eV: 3.3Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 0.02 eV. 4Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 6.7Template:ETemplate:NbspJ. In eV: 6.7Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 0.04 eV.
  13. Template:Cite web
  14. Calculated: 4 to 13Template:NbspkJ/mol. 4Template:NbspkJ/mol = 4Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 6.7Template:ETemplate:NbspJ. In eV: 6.7Template:ETemplate:NbspJ / 1.6Template:E eV/J = 0.042 eV. 13Template:NbspkJ/mol = 13Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 2.2Template:ETemplate:NbspJ. In eV: 13Template:ETemplate:NbspJ / 6.022Template:E molecules/mol / 1.6Template:E eV/J = 0.13 eV.
  15. Template:Cite journal
  16. Calculated: 0.28 eV × 1.6Template:ETemplate:NbspJ/eV = 4.5Template:ETemplate:NbspJ
  17. Template:Cite web
  18. Template:Cite web
  19. Calculated: E = hc/λ. ETemplate:Sub = 6.6Template:E kg-mTemplate:Sup/s × 3Template:E m/s / (780Template:E m) = 2.5Template:ETemplate:NbspJ. E_390 _nm = 6.6Template:E kg-mTemplate:Sup/s × 3Template:E m/s / (390Template:E m) = 5.1Template:ETemplate:NbspJ
  20. Calculated: 50 kcal/mol × 4.184Template:NbspJ/calorie / 6.0Template:Ee23 molecules/mol = 3.47Template:ETemplate:NbspJ. (3.47Template:ETemplate:NbspJ / 1.60Template:E eV/J = 2.2 eV.) and 200 kcal/mol × 4.184Template:NbspJ/calorie / 6.0Template:Ee23 molecules/mol = 1.389Template:ETemplate:NbspJ. (7.64Template:ETemplate:NbspJ / 1.60Template:E eV/J = 8.68 eV.)
  21. Template:Cite journal
  22. Template:Cite journal
  23. Template:Cite web
  24. Calculated: 1/2 × 27Template:E g × (3.5 miles per hour)Template:Sup = 3Template:ETemplate:NbspJ
  25. Template:Cite web. "The eardrum is a [...] membran[e] with an area of 65 mm2."
  26. Template:Cite web
  27. Calculated: two eardrums ≈ 1 cm2. 1Template:E W/m2 × 1Template:E m2 × 1 s = 1Template:ETemplate:NbspJ
  28. Template:Cite book
  29. Calculated: 170Template:E eV × 1.6Template:ETemplate:NbspJ/eV = 2.7Template:ETemplate:NbspJ
  30. Template:Cite web
  31. Template:Cite web
  32. Template:Cite web
  33. Template:Cite web
  34. Template:Cite web
  35. Template:Cite web
  36. 36.0 36.1 Template:Cite web
  37. 37.0 37.1 Template:Cite web
  38. Template:Cite web
  39. Template:Cite web
  40. Template:Cite web
  41. Template:Cite web
  42. Template:Cite web
  43. Template:Cite web
  44. Template:Cite web
  45. Template:Cite web
  46. Template:Cite web
  47. Calculated: 7Template:E g × 9.8 m/s2 × 1Template:E m
  48. Template:Cite web
  49. Template:Cite web
  50. Calculated: 50Template:E eV × 1.6Template:ETemplate:NbspJ/eV = 8Template:ETemplate:NbspJ
  51. Template:Cite web
  52. Template:Cite web
  53. Template:Cite journal
  54. Template:Cite web
  55. Template:Cite web
  56. Template:Cite journal
  57. Template:Cite web
  58. Calculated: 400Template:E eV × 1.6Template:ETemplate:NbspJ/eV = 6.4Template:ETemplate:NbspJ
  59. 59.00 59.01 59.02 59.03 59.04 59.05 59.06 59.07 59.08 59.09 59.10 59.11 Template:Cite web
  60. Template:Cite web
  61. Template:Cite web
  62. Template:Cite web
  63. Calculated: 6.5Template:E eV per beam × 1.6Template:ETemplate:NbspJ/eV = 1.04Template:ETemplate:NbspJ
  64. Template:Cite web
  65. Template:Cite journal
  66. Template:Cite web
  67. Template:Cite web
  68. Template:Cite web
  69. Calculated: m×g×h = 11.34Template:E kg × 9.8 m/sTemplate:Sup × 1 m = 1.1Template:ETemplate:NbspJ
  70. Template:Cite web
  71. Calculated: m×g×h = 1Template:E kg × 9.8 m/sTemplate:Sup × 1 m = 1Template:NbspJ
  72. Template:Cite web
  73. Template:Cite web
  74. Template:Cite web
  75. Calculated: 5Template:E eV × 1.6Template:ETemplate:NbspJ/ev = 8Template:NbspJ
  76. Template:Cite web
  77. Template:Cite web
  78. Template:Cite web
  79. Template:Cite journal
  80. Template:Cite web
  81. Template:Cite web
  82. Template:Cite web
  83. Template:Cite web
  84. Template:Cite web
  85. Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/sTemplate:Sup × 40Template:E m = 274Template:NbspJ
  86. Template:Cite web
  87. Template:Cite web
  88. Template:Cite web
  89. Calculated: 1/2 × 0.8 kg × (30 m/s)Template:Sup = 360Template:NbspJ
  90. Template:Cite web
  91. Template:Cite web
  92. Calculated: 1/2 × 7.26 kg × (14.7 m/s)Template:Sup = 784Template:NbspJ
  93. Template:Cite journal
  94. Template:Cite web
  95. powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
  96. Template:Cite web
  97. Template:Cite web
  98. Calculated: 1/2 × 7.26 kg × (30.7 m/s)Template:Sup = 3420Template:NbspJ
  99. 99.0 99.1 4.2Template:ETemplate:NbspJ/ton of TNT-equivalent × (1 ton/1Template:E grams) = 4.2Template:ETemplate:NbspJ/gram of TNT-equivalent
  100. Template:Cite web
  101. Template:Cite web
  102. Template:Cite web
  103. Template:Cite web
  104. Template:Cite web
  105. Template:Cite web
  106. 106.0 106.1 Template:Cite web
  107. Calculated: E = 1/2 m×vTemplate:Sup = 1/2 × (1Template:E kg) × (1Template:E m/s)Template:Sup = 5Template:ETemplate:NbspJ.
  108. 108.0 108.1 Template:Cite web
  109. Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×vTemplate:Sup = 1/2 × (1Template:E kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0Template:ETemplate:NbspJ. E = 1/2 × (5Template:E kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15Template:ETemplate:NbspJ.
  110. Template:Cite web
  111. Calculated: KE = 1/2 × 2Template:E kg × (32 m/s)Template:Sup = 1.0Template:ETemplate:NbspJ
  112. Template:Cite web
  113. Template:Cite web
  114. Template:Cite web
  115. 115.0 115.1 Template:Cite web
  116. Calculated: 2000 food calories = 2.0Template:E cal × 4.184Template:NbspJ/cal = 8.4Template:ETemplate:NbspJ
  117. Template:Cite web
  118. Calculated: 1/2 × m × vTemplate:Sup = 1/2 × 48.78 kg × (655 m/s)Template:Sup = 1.0Template:ETemplate:NbspJ.
  119. Calculated: 2600 food calories = 2.6Template:E cal × 4.184Template:NbspJ/cal = 1.1Template:ETemplate:NbspJ
  120. Template:Cite magazine
  121. Template:Cite web
  122. Calculated J per dollar: 1 million BTU/$28.90 = 1Template:E BTU / 28.90 dollars × 1.055Template:ETemplate:NbspJ/BTU = 3.65Template:ETemplate:NbspJ/dollar
  123. Calculated cost per kWh: 1 kWh × 3.60Template:ETemplate:NbspJ/kWh / 3.65Template:ETemplate:NbspJ/dollar = 0.0986 dollar/kWh
  124. Template:Cite web
  125. Template:Cite web
  126. Template:Cite web
  127. Template:Cite web
  128. Template:Cite web
  129. Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1Template:ETemplate:NbspJ
  130. Template:Cite web
  131. Template:Cite web
  132. Template:Cite web
  133. Calculated: 380 kW-h × 3.6Template:ETemplate:NbspJ/kW-h = 1.37Template:ETemplate:NbspJ
  134. Template:Cite web
  135. thepartsbin.com – Volvo Fuel Tank: Compare at The Parts BinTemplate:Dead link, 6 May 2012
  136. EP=c5G
  137. 137.0 137.1 Template:Cite web
  138. 138.0 138.1 Template:Cite web
  139. p. 20 (70 of 302) Section: 2.2 THE AIRCRAFT
  140. Template:Cite web
  141. Calculated: 1.3Template:NbspJ/s × 80 years × 3.16Template:E s/year = 3.3Template:ETemplate:NbspJ
  142. Template:Cite web
  143. Calculated: 1239 kWh × 3.6Template:ETemplate:NbspJ/kWh = 4.5Template:ETemplate:NbspJ
  144. 144.0 144.1 Energy Units Template:Webarchive, by Arthur Smith, 21 January 2005
  145. Template:Cite web
  146. Calculated: 11 tons of TNT-equivalent × 4.184Template:ETemplate:NbspJ/ton of TNT-equivalent = 4.6Template:ETemplate:NbspJ
  147. Template:Cite web
  148. Template:Cite web
  149. Calculated: 581 gallons × 125Template:ETemplate:NbspJ/gal = 7.26Template:ETemplate:NbspJ
  150. Calculated: 1Template:E watts × 86400 seconds/day = 8.6Template:ETemplate:NbspJ
  151. Calculated: 3.44Template:ETemplate:NbspJ/U-235-fission × 1Template:E kg / (235 amu per U-235-fission × 1.66Template:E amu/kg) = 8.82Template:ETemplate:NbspJ
  152. Template:Cite web
  153. Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4Template:ETemplate:NbspJ
  154. Template:Cite web
  155. Equation for calculating potential assumes that the towers' center of mass is located halfway along the building's height of ~416 meters.
  156. Template:Cite web
  157. Template:Cite web
  158. 158.0 158.1 158.2 Template:Cite web
  159. Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38Template:ETemplate:NbspJ
  160. Calculated: 1Template:E watts × 3600 seconds/hour
  161. Template:Cite web
  162. Template:Cite web
  163. Calculated: 7500Template:E watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3Template:ETemplate:NbspJ of burnup energy. Electricity = burnup × ~29% efficiency = 3.8Template:ETemplate:NbspJ
  164. Calculated: 4.2Template:ETemplate:NbspJ/ton of TNT-equivalent × 1Template:E tons/megaton = 4.2Template:ETemplate:NbspJ/megaton of TNT-equivalent
  165. Template:Cite web
  166. Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36Template:ETemplate:NbspJ
  167. Template:Cite web
  168. Calculated: 320,000 L × 0.804 kg/L × 43.15  MJ/kg = 11.1Template:ETemplate:NbspJ
  169. Template:Cite web
  170. Template:Cite web
  171. Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2Template:ETemplate:NbspJ
  172. Template:Cite web
  173. Template:Cite web
  174. Template:Cite web
  175. Template:Cite web
  176. Calculated: 15 kt = 15Template:E grams of TNT-equivalent × 4.2Template:ETemplate:NbspJ/gram TNT-equivalent = 6.3Template:ETemplate:NbspJ
  177. Template:Cite web
  178. Template:Cite web
  179. 179.0 179.1 Template:Cite web
  180. Template:Cite web
  181. 181.0 181.1 181.2 181.3 Template:Cite web
  182. Calculated: 288.6Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 1.04Template:ETemplate:NbspJ
  183. Calculated: 4.2Template:ETemplate:NbspJ/ton of TNT-equivalent × 1Template:E tons/megaton = 4.2Template:ETemplate:NbspJ/megaton of TNT-equivalent
  184. Calculated: 3.02Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 1.09Template:ETemplate:NbspJ
  185. Template:Cite web
  186. Template:Cite web
  187. Calculated: E = mcTemplate:Sup = 1 kg × (2.998Template:E m/s)Template:Sup = 8.99Template:ETemplate:NbspJ
  188. Template:Cite journal
  189. 189.0 189.1 189.2 The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter. Note, however, that because portions of Earth reflect light well, the actual energy absorbed is about 1.2*10^17 watts, from an average albedo of 0.3.
  190. Template:Cite web
  191. Calculated: 50Template:E tons TNT-equivalent × 4.2Template:ETemplate:NbspJ/ton TNT-equivalent = 2.1Template:ETemplate:NbspJ
  192. Template:Cite journal
  193. Calculated to be 61 megatons of TNT, equivalent to 2.552Template:ETemplate:NbspJ
  194. Calculated: 115.6Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 4.16Template:ETemplate:NbspJ
  195. Template:Cite web
  196. Template:Cite book
  197. Calculated: 200Template:E tons of TNT equivalent × 4.2Template:ETemplate:NbspJ/ton of TNT equivalent = 8.4Template:ETemplate:NbspJ
  198. This value appears to be referred only to the third explosion on 27 August, 10.02 a.m. According to reports, the third explosion was by far the largest; it is associated to the biggest sound in the recorded history, the highest tsunami during the eruption and the most powerful shock waves rounded the world several times. 200 Megatons of TNT are often referred as the total energy released by the entire eruption, but it's plausible that are rather the energy released by the single third explosion, considering the effects.[1][2]
  199. Template:Cite web
  200. Template:Cite web
  201. 201.0 201.1 201.2 201.3 Template:Cite journal
  202. Template:Cite web
  203. Calculated: 3.741Template:E kWh × 3.600Template:ETemplate:NbspJ/kWh = 1.347Template:ETemplate:NbspJ
  204. Template:Cite web
  205. Calculated: 3.953Template:E kWh × 3.600Template:ETemplate:NbspJ/kWh = 1.423Template:ETemplate:NbspJ
  206. 206.0 206.1 Template:Cite web
  207. Calculated: 17.8Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 6.41Template:ETemplate:NbspJ
  208. Calculated: 18.95Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 6.82Template:ETemplate:NbspJ
  209. Template:Cite magazine
  210. Template:Cite web
  211. Template:Cite web
  212. Template:Cite web
  213. 213.0 213.1 213.2 213.3 213.4 Template:Cite web
  214. Calculated: 12002.4Template:E tonnes of oil equivalent × 42Template:ETemplate:NbspJ/tonne of oil equivalent = 5.0Template:ETemplate:NbspJ
  215. Template:Cite web
  216. "2023 saw a second consecutive record year for global primary energy consumption as it grew by 2%, reaching 620 EJ."
  217. 217.0 217.1 217.2 Template:Cite web
  218. Template:Cite web
  219. Template:Cite web
  220. Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
  221. Calculated: "6608.9 trillion cubic feet" => 6608.9Template:E billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1Template:E tonnes of oil equivalent/million tonnes of oil equivalent × 42Template:ETemplate:NbspJ/tonne of oil equivalent = 6.9Template:ETemplate:NbspJ
  222. Calculated: "188.8 thousand million tonnes" => 188.8Template:E tonnes of oil × 42Template:ETemplate:NbspJ/tonne of oil = 7.9Template:ETemplate:NbspJ
  223. Template:Cite journalCalculated per reference: 0.58Template:NbspW·m−2 is 9.3Template:ETemplate:NbspJ·yr−1 in the global domain
  224. Template:Cite journal
  225. Calculated: 1.27Template:E mTemplate:Sup × 1370 W/mTemplate:Sup × 86400 s/day = 1.5Template:ETemplate:NbspJ
  226. Template:Cite journal
  227. Calculated: 860938 million tonnes of coal => 860938Template:E tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42Template:ETemplate:NbspJ/tonne of oil equivalent = 2.4Template:ETemplate:NbspJ
  228. Calculated: natural gas + petroleum + coal = 6.9Template:ETemplate:NbspJ + 7.9Template:ETemplate:NbspJ + 2.4Template:ETemplate:NbspJ = 3.9Template:ETemplate:NbspJ
  229. Template:Cite journal
  230. Template:Cite journal
  231. Template:Cite journal
  232. Template:Cite conference
  233. Template:Cite journal
  234. Template:Cite web
  235. Clarification of calculation: Rotational energy = (defined equal to) 1/2 * Moment of Inertia Factor * Mass * Radius^2 * Angular Velocity^2 The inertial factor has been normalized, and takes on a value between 0 and 1. In this case it is 0.337(24).
  236. Calculated: 1.27Template:E mTemplate:Sup × 1370 W/mTemplate:Sup × 86400 s/day = 5.5Template:ETemplate:NbspJ
  237. Template:Cite journal
  238. Template:Cite journal
  239. Template:Cite journal
  240. 240.0 240.1 240.2 Template:Cite web
  241. Template:Cite web
  242. Template:Cite journal
  243. Template:Cite web
  244. Template:Cite web
  245. Template:Cite web
  246. Template:Cite web
  247. Template:Cite web
  248. Calculated: KE = 1/2 × m × vTemplate:Sup. v = 1.023Template:E m/s. m = 7.349Template:E kg. KE = 1/2 × (7.349Template:E kg) × (1.023Template:E m/s)Template:Sup = 3.845Template:ETemplate:NbspJ.
  249. Template:Cite journal
  250. Template:Cite web
  251. Template:Cite web
  252. Template:Cite web
  253. Calculated: E_rotational = 1/2 × I × wTemplate:Sup = 1/2 × (8.0Template:E kg mTemplate:Sup) × (2×pi/(23.9345 hour period × 3600 seconds/hour))Template:Sup = 2.1Template:ETemplate:NbspJ
  254. Template:Cite web
  255. Template:Cite web
  256. Template:Cite arXiv
  257. Calculated: 3.8Template:ETemplate:NbspJ/s × 86400 s/day = 3.3Template:ETemplate:NbspJ
  258. Template:Cite web
  259. Template:Cite web
  260. Template:Cite web
  261. KE = 1/2 × 5.9722×10^24 kg × (30.29 km/s)^2 = 2.74×10^33 J
  262. Calculated: 3.8Template:ETemplate:NbspJ/s × 86400 s/day × 365.25 days/year = 1.2Template:ETemplate:NbspJ
  263. Template:Cite arXiv
  264. Template:Cite web
  265. 265.0 265.1 265.2 265.3 Template:Cite web
  266. Template:Cite web
  267. Template:Cite journal
  268. Template:Cite journal
  269. Template:Cite web
  270. Template:Cite web
  271. Template:Cite web
  272. U=(3/5)GM2rTemplate:BrChandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)Template:BrLang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  273. Template:Cite web
  274. Template:Cite web
  275. Template:Cite journal "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 10Template:Sup erg"
  276. Calculated: 5Template:E erg × 1Template:ETemplate:NbspJ/erg = 5Template:ETemplate:NbspJ
  277. Template:Cite journal
  278. Template:Cite journal
  279. Template:Cite journal
  280. 280.0 280.1 Template:Cite journal
  281. Template:Cite journal
  282. Template:Cite web
  283. Template:Cite web
  284. Template:Cite journal
  285. Template:Cite journal
  286. Template:Cite journal
  287. Template:Cite journal
  288. Template:Cite journal
  289. Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae
  290. Template:Cite journal
  291. Template:Cite journal
  292. Template:Cite journal
  293. Template:Cite journal
  294. Template:Cite web
  295. Template:Cite web
  296. Template:Cite journal
  297. Template:Cite journal
  298. Template:Cite journal
  299. Template:Cite journal
  300. Template:Cite journal
  301. Template:Cite journal
  302. Template:Cite journal
  303. Template:Cite journal
  304. Template:Cite journal
  305. Template:Cite journal
  306. Template:Cite web
  307. Template:Cite web
  308. Template:Cite journal
  309. If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]
  310. 310.0 310.1 It is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in an electromagnetic field, which are able to explain energetics up and over 1047 J
  311. Template:Cite arXiv
  312. Template:Cite journal
  313. Template:Cite journal
  314. Assuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses
  315. Template:Cite journal
  316. Template:Cite journal
  317. A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced.[3] See the following note for the link of the research
  318. Template:Cite journal
  319. Template:Cite journal
  320. Template:Cite journal
  321. Template:Cite journal
  322. Template:Cite journal
  323. Template:Cite journal
  324. Template:Cite web
  325. To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note
  326. Template:Cite journal
  327. Template:Cite web
  328. Template:Cite journal
  329. Template:Cite journal
  330. Template:Cite journal
  331. Template:Cite journal
  332. Template:Cite web
  333. Template:Cite web
  334. Template:Cite web
  335. Template:Cite journal
  336. Template:Cite journal
  337. Template:Cite journal
  338. Template:Cite web
  339. Template:Cite journal
  340. Template:Cite web
  341. Template:Cite web
  342. Template:Cite journal
  343. Template:Cite web
  344. Template:Cite web
  345. Template:Cite web
  346. Template:Cite journal
  347. Template:Cite web
  348. Details of calculation: WMAP 10 year survey's estimate of mass-energy density * volume of Observable Universe * percentage of which is ordinary matter: [9.9e-30 g/cm^3] * [3.566e+80 m^3] * [0.046] * [c^2] = 1.46e+70 Joules.
  349. Template:Cite web