Norm (abelian group)

From testwiki
Jump to navigation Jump to search

Template:For In mathematics, specifically abstract algebra, if (G,+) is an (abelian) group with identity element e then ν:G is said to be a norm on (G,+) if:

  1. Positive definiteness: ν(g)>0 for all ge and ν(e)=0,
  2. Subadditivity: ν(g+h)ν(g)+ν(h),
  3. Inversion (Symmetry): ν(g)=ν(g) for all gG.[1]

An alternative, stronger definition of a norm on (G,+) requires

  1. ν(g)>0 for all ge,
  2. ν(g+h)ν(g)+ν(h),
  3. ν(mg)=|m|ν(g) for all m.[2]

The norm ν is discrete if there is some real number ρ>0 such that ν(g)>ρ whenever g0.

Free abelian groups

An abelian group is a free abelian group if and only if it has a discrete norm.[2]

References

Template:Reflist


Template:Group-theory-stub