Montel space
Template:Short description In functional analysis and related areas of mathematics, a Montel space, named after Paul Montel, is any topological vector space (TVS) in which an analog of Montel's theorem holds. Specifically, a Montel space is a barrelled topological vector space in which every closed and bounded subset is compact.
Definition
A topological vector space (TVS) has the [[Heine–Borel theorem#In the theory of topological vector spaces|Template:Visible anchor]] if every closed and bounded subset is compact. A Template:Visible anchor is a barrelled topological vector space with the Heine–Borel property. Equivalently, it is an infrabarrelled semi-Montel space where a Hausdorff locally convex topological vector space is called a Template:Visible anchor or Template:Visible anchor if every bounded subset is relatively compact.[note 1] A subset of a TVS is compact if and only if it is complete and totally bounded. A Template:Visible anchor is a Fréchet space that is also a Montel space.
Characterizations
A separable Fréchet space is a Montel space if and only if each weak-* convergent sequence in its continuous dual is strongly convergent.Template:Sfn
A Fréchet space is a Montel space if and only if every bounded continuous function sends closed bounded absolutely convex subsets of to relatively compact subsets of Moreover, if denotes the vector space of all bounded continuous functions on a Fréchet space then is Montel if and only if every sequence in that converges to zero in the compact-open topology also converges uniformly to zero on all closed bounded absolutely convex subsets of Template:Sfn
Sufficient conditions
Semi-Montel spaces
A closed vector subspace of a semi-Montel space is again a semi-Montel space. The locally convex direct sum of any family of semi-Montel spaces is again a semi-Montel space. The inverse limit of an inverse system consisting of semi-Montel spaces is again a semi-Montel space. The Cartesian product of any family of semi-Montel spaces (resp. Montel spaces) is again a semi-Montel space (resp. a Montel space).
Montel spaces
The strong dual of a Montel space is Montel. A barrelled quasi-complete nuclear space is a Montel space.Template:Sfn Every product and locally convex direct sum of a family of Montel spaces is a Montel space.Template:Sfn The strict inductive limit of a sequence of Montel spaces is a Montel space.Template:Sfn In contrast, closed subspaces and separated quotients of Montel spaces are in general not even reflexive.Template:Sfn Every Fréchet Schwartz space is a Montel space.Template:Sfn
Properties
Montel spaces are paracompact and normal.[1] Semi-Montel spaces are quasi-complete and semi-reflexive while Montel spaces are reflexive.
No infinite-dimensional Banach space is a Montel space. This is because a Banach space cannot satisfy the Heine–Borel property: the closed unit ball is closed and bounded, but not compact. Fréchet Montel spaces are separable and have a bornological strong dual. A metrizable Montel space is separable.Template:Sfn
Fréchet–Montel spaces are distinguished spaces.
Examples
In classical complex analysis, Montel's theorem asserts that the space of holomorphic functions on an open connected subset of the complex numbers has this property.Template:Fact
Many Montel spaces of contemporary interest arise as spaces of test functions for a space of distributions. The space of smooth functions on an open set in is a Montel space equipped with the topology induced by the family of seminorms[2] for and ranges over compact subsets of and is a multi-index. Similarly, the space of compactly supported functions in an open set with the final topology of the family of inclusions as ranges over all compact subsets of The Schwartz space is also a Montel space.
Counter-examples
Every infinite-dimensional normed space is a barrelled space that is Template:Em a Montel space.Template:Sfn In particular, every infinite-dimensional Banach space is not a Montel space.Template:Sfn There exist Montel spaces that are not separable and there exist Montel spaces that are not complete.Template:Sfn There exist Montel spaces having closed vector subspaces that are Template:Em Montel spaces.Template:Sfn
See also
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
- Template:Annotated link
Notes
Template:Reflist Template:Reflist
References
Bibliography
- Template:Edwards Functional Analysis Theory and Applications
- Template:Hogbe-Nlend Bornologies and Functional Analysis
- Template:Hogbe-Nlend Moscatelli Nuclear and Conuclear Spaces Template:Sfn whitelist
- Template:Jarchow Locally Convex Spaces
- Template:Khaleelulla Counterexamples in Topological Vector Spaces
- Template:Köthe Topological Vector Spaces I
- Template:Köthe Topological Vector Spaces II
- Template:Cite journal
- Template:Narici Beckenstein Topological Vector Spaces
- Template:Robertson Topological Vector Spaces
- Template:Schaefer Wolff Topological Vector Spaces
- Template:Schechter Handbook of Analysis and Its Foundations
- Template:Swartz An Introduction to Functional Analysis
- Template:Trèves François Topological vector spaces, distributions and kernels
- Template:Wilansky Modern Methods in Topological Vector Spaces
- Template:Springer
Template:Functional analysis Template:Topological vector spaces
Cite error: <ref> tags exist for a group named "note", but no corresponding <references group="note"/> tag was found