Ming-Fa Lin

From testwiki
Jump to navigation Jump to search

Template:Short description

Template:Like resume Template:Infobox scientist

Ming-Fa Lin (Taiwanese Mandarin: 林 明發, Taiwanese Hokkien: Lîm Bîng-Huat; Template:Birth date – August 14, 2023)[1][2] was a Taiwanese theoretical physicist. He was a distinguished professor in the Department of Physics of National Cheng Kung University in Tainan, Taiwan. His main scientific interests focus on the essential properties of carbon-related materials and low-dimensional systems. He presided over more than 10 Ministry of Science and Technology research projects. He published more than 300 peer-reviewed articles and over 10 academic books. His research principles include innovation, uniqueness, diversity, completeness, and generalization.[3]

Education and career

He received a B.S. degree in physics from National Cheng Kung University in 1984. Later he received the M.S.,[4] and Ph.D. degrees in physics from National Tsing Hua University (Hsinchu, Taiwan) in 1986 and 1993, respectively.[5][6]

As a postdoctoral fellow in physics from the National Tsing-Hua University, he stayed until 1995. After three years in the National Chiao Tung University (Hsinchu, Taiwan), 1995–1997, he became a professor in the National Cheng Kung University. M. F. Lin was a member of the American Physical Society, American Chemical Society, Physical Society of Taiwan,[7] and Taiwan Association of University Professors.[8]

Professional experience

Research fields

Professor Lin has performed research in the fields of solid-state physics, condensed matter physics, materials science, nano science, carbon nanotube, graphene, graphene nanoribbon, carbon-related materials, low-dimensional materials, semiconductor, and energy materials.

Honors and awards

Research highlights

Optical properties of graphene nanoribbons

Template:Main

Absorption spectra of monolayer graphene nanoribbons with Ny=72
(a) The zigzag graphene nanoribbons possess an optical selection rule of ΔJ=odd. (b) The armchair graphene nanoribbons possess an optical selection rule of ΔJ=0.Template:RTemplate:RTemplate:RTemplate:R

In 2000, Lin cooperated with Shyu to calculate the optical properties of graphene nanoribbons numerically.[18]Template:R The different selection rules for optical transitions in zigzag and armchair graphene nanoribbons were first reported. In 2007, these results were supplemented by a comparative study of zigzag graphene nanoribbons with single-wall armchair carbon nanotubes by Hsu and Reichl.[19] In 2011, Lin conducted Chung et al. to analyze and report the edge-dependent optical selection rules analytically.[20]Template:R[21] In the meantime, Sasaki et al. also reported their theoretical prediction as a confirmation.[22]

The selection rule in zigzag graphene nanoribbons differs from that in armchair graphene nanoribbons. Optical transitions between the edge and bulk states enrich the low-energy region absorption spectrum (< 3 eV) with high-intensity absorption peaks. Analytical derivation of the numerically obtained selection rules was presented in 2011.Template:RTemplate:RTemplate:RTemplate:R The selection rule for the incident light polarized longitudinally to the zigzag nanoribbon axis is that |ΔJ|=|JcJv|=odd, where Jc and Jv are index number for the conduction and valence energy subbands, respectively. For armchair graphene nanoribbons, the selection rule is ΔJ=JcJv=0.Template:RTemplate:RTemplate:RTemplate:R

Research projects

PI

  1. 1997.11 - 1998.07: Physical Properties of Carbon Nanotubes (I)[23]
  2. 1998.08 - 1999.07: Physical Properties of Carbon Toroids (I)[24]
  3. 1999.08 - 2000.07: Physical Properties of Carbon Toroids and Carbon Nanotubes (III)[25]
  4. 2000.08 - 2001.07: Physical Properties of Graphite-Related Systems and Two-Dimensional Modulated Electronic Systems (I)[26]
  5. 2001.08 - 2002.07: Physical Properties of Graphite-Related Systems and Two-Dimensional Modulated Electronic Systems (II)[27]
  6. 2002.08 - 2003.07: Physical Properties of Graphite-Related Systems and Two-Dimensional Modulated Electronic Systems (III)[28]
  7. 2003.08 - 2004.07: Many-Body Physical Properties of Carbon Nanotubes (I)[29]
  8. 2004.08 - 2005.07: Many-Body Physical Properties of Carbon Nanotubes (II)[30]
  9. 2005.08 - 2006.07: Many-Body Physical Properties of Carbon Nanotubes (III)[31]
  10. 2006.08 - 2007.07: Physical Properties of Low-Dimensional Carbon-Related Systems (I)[32]
  11. 2008.08 - 2009.07: Physical Properties of Low-Dimensional Carbon-Related Systems (II)[33]
  12. 2007.08 - 2008.07: Physical Properties of Low-Dimensional Carbon-Related Systems (III)[34]
  13. 2009.08 - 2010.07: Electronic Properties of Layered Systems in the Presence of External Fields (I)[35]
  14. 2010.08 - 2011.07: Electronic Properties of Layered Systems in the Presence of External Fields (II)[36]
  15. 2011.08 - 2012.07: Electronic Properties of Layered Systems in the Presence of External Fields (III)[37]
  16. 2012.08 - 2013.07: Electronic Properties of Layered Systems in the Presence of External Fields (IV)[38]
  17. 2013.08 - 2014.07: Physical Properties of Graphene Systems (I)[39]
  18. 2014.08 - 2015.07: Physical Properties of Graphene Systems (II)[40]
  19. 2015.08 - 2016.07: Physical Properties of Graphene Systems (III)[41]
  20. 2016.08 - 2017.07: Essential Properties of IV-Group 2D Systems (I)[42]
  21. 2017.08 - 2018.07: Essential Properties of IV-Group 2D Systems (II)[43]
  22. 2018.08 - 2019.07: Essential Properties of IV-Group 2D Systems (III)[44]
  23. 2019.08 - 2020.07: Theoretical Frameworks for Essential Properties of Layered Systems (I)[45]
  24. 2020.08 - 2021.07: Theoretical Frameworks for Essential Properties of Layered Systems (II)[46]
  25. 2021.08 - 2022.07: Theoretical Frameworks for Essential Properties of Layered Systems (III)[47]
  26. 2022.08 - 2023.07: The Basic Science under the Quasi-Particle Framework (I)[48]
  27. 2023.08 - 2024.07: The Basic Science under the Quasi-Particle Framework (II)[49]

Co-PI

  1. 2014.08 - 2015.07: MBE Growth, Electronic, Spintronic and Optical Studies on Topological Insulator Films and Advanced Applications (I)[50]
  2. 2015.08 - 2016.07: MBE Growth, Electronic, Spintronic and Optical Studies on Topological Insulator Films and Advanced Applications (II)[51]
  3. 2016.08 - 2017.07: MBE Growth, Electronic, Spintronic and Optical Studies on Topological Insulator Films and Advanced Applications (III)[52]

Selected publications

More than 300 peer-reviewed articles are published and listed in abstract and citation databases.

  1. Template:Scopus
  2. Template:Google Scholar ID

The selected publications are listed.

Books

  1. Optical Properties of Graphene in Magnetic and Electric Fields[53]
  2. Theory of Magnetoelectric Properties of 2D Systems[54]
  3. Structure- and Adatom-Enriched Essential Properties of Graphene Nanoribbons[55]
  4. Handbook of Green Energy Materials[56]
  5. Coulomb Excitations and Decays in Graphene-Related Systems[57]
  6. Diverse Quantization Phenomena in Layered Materials[58]
  7. Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bonding Schemes[59]
  8. Silicene-Based Layered Materials[60]
  9. Electronic and Optical Properties of Graphite-Related Systems[61]
  10. Lithium-Ion Batteries and Solar Cells: Physical, Chemical, and Materials Properties[62]
  11. Rich Quasiparticle Properties of Low Dimensional Systems[63]
  12. First-Principles Calculations for Cathode, Electrolyte and Anode Battery Materials[64]
  13. Lithium-Related Batteries: Advances and Challenges[65]
  14. Diverse Quasiparticle Properties of Emerging Materials: First-Principles Simulations[66]
  15. Energy Storage and Conversion Materials: Properties, Methods, and Applications[67]
  16. Fundamental Physicochemical Properties of Germanene-related Materials: A Theoretical Perspective[68]
  17. Rich Quasiparticle Properties in Layered Graphene-Related Systems[69]
  18. Chemical Modifications of Graphene-Like Materials[70]

Review articles

  1. Magneto-electronic properties of multilayer graphenes[71]
  2. Electronic and optical properties of graphene nanoribbons in external fields[7]

References

Template:Reflist

Template:Authority control

  1. Template:Cite web
  2. Template:Cite web
  3. Template:Cite AV media
  4. Template:Cite thesis
  5. Template:Cite thesis
  6. Template:Cite thesis
  7. 7.0 7.1 Template:Cite journal
  8. Template:Cite web
  9. 9.0 9.1 Template:Cite journal
  10. Template:Cite journal
  11. Template:Cite journal
  12. Template:Cite journal
  13. Template:Cite journal
  14. Template:Cite web
  15. Template:Cite journal
  16. Template:Cite journal Note: The list is not on the page directly. To find the person, the file must be opened and searched. How to search: (1) Download the 'Table_1_Authors_career_2022_pubs_since_1788_wopp_extracted_202310.xlsx' file. (2) After opening it with Excel software, first filter with "National Cheng Kung University". Then filter with "Lin, Ming Fa" (without "-" between Ming and Fa).
  17. Template:Cite web
  18. Template:Cite journal
  19. Template:Cite journal
  20. Template:Cite journal
  21. Template:Cite thesis
  22. Template:Cite journal
  23. Template:Cite web
  24. Template:Cite web
  25. Template:Cite web
  26. Template:Cite web
  27. Template:Cite web
  28. Template:Cite web
  29. Template:Cite web
  30. Template:Cite web
  31. Template:Cite web
  32. Template:Cite web
  33. Template:Cite web
  34. Template:Cite web
  35. Template:Cite web
  36. Template:Cite web
  37. Template:Cite web
  38. Template:Cite web
  39. Template:Cite web
  40. Template:Cite web
  41. Template:Cite web
  42. Template:Cite web
  43. Template:Cite web
  44. Template:Cite web
  45. Template:Cite web
  46. Template:Cite web
  47. Template:Cite web
  48. Template:Cite web
  49. Template:Cite web
  50. Template:Cite web
  51. Template:Cite web
  52. Template:Cite web
  53. Template:Cite book
  54. Template:Cite book
  55. Template:Cite book
  56. Template:Cite book
  57. Template:Cite book
  58. Template:Cite book
  59. Template:Cite book
  60. Template:Cite book
  61. Template:Cite book
  62. Template:Cite book
  63. Template:Cite book
  64. Template:Cite book
  65. Template:Cite book
  66. Template:Cite book
  67. Template:Cite book
  68. Template:Cite book
  69. Template:Cite book
  70. Template:Cite book
  71. Template:Cite journal