List of interstellar and circumstellar molecules

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Featured list Template:Use British English

Infrared spectrum of HH 46/47 (image in inset), with vibrational bands of several molecules labelled in colour

This is a list of molecules that have been detected in the interstellar medium and circumstellar envelopes, grouped by the number of component atoms. The chemical formula is listed for each detected compound, along with any ionized form that has also been observed.

Background

Idealised example of the rotational spectrum (bottom) produced by transitions between different rotational energy levels (top) of a simple linear molecule. B is the rotational constant of the molecule, J is the rotational quantum number, J is the upper level and J is the lower level.

The molecules listed below were detected through astronomical spectroscopy. Their spectral features arise because molecules either absorb or emit a photon of light when they transition between two molecular energy levels. The energy (and thus the wavelength) of the photon matches the energy difference between the levels involved. Molecular electronic transitions occur when one of the molecule's electrons moves between molecular orbitals, producing a spectral line in the ultraviolet, optical or near-infrared parts of the electromagnetic spectrum. Alternatively, a vibrational transition transfers quanta of energy to (or from) vibrations of molecular bonds, producing signatures in the mid- or far-infrared. Gas-phase molecules also have quantised rotational levels, leading to transitions at microwave or radio wavelengths.[1]

Sometimes a transition can involve more than one of these types of energy level e.g. ro-vibrational spectroscopy changes both the rotational and vibrational energy level. Occasionally all three occur together, as in the Phillips band of C2 (diatomic carbon), in which an electronic transition produces a line in the near-infrared, which is then split into several vibronic bands by a simultaneous change in vibrational level, which in turn are split again into rotational branches.[2]

The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and by its molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect.[3] Interactions between the atomic nuclei and the electrons sometimes cause further hyperfine structure of the spectral lines. If the molecule exists in multiple isotopologues (versions containing different atomic isotopes), the spectrum is further complicated by isotope shifts.

Detection of a new interstellar or circumstellar molecule requires identifying a suitable astronomical object where it is likely to be present, then observing it with a telescope equipped with a spectrograph working at the required wavelength, spectral resolution and sensitivity. The first molecule detected in the interstellar medium was the methylidyne radical (CH) in 1937, through its strong electronic transition at 4300 angstroms (in the optical).[4] Advances in astronomical instrumentation have led to increasing numbers of new detections. From the 1950s onwards, radio astronomy began to dominate new detections, with sub-mm astronomy also becoming important from the 1990s.[3]

The inventory of detected molecules is highly biased towards certain types which are easier to detect. For example, radio astronomy is most sensitive to small linear molecules with a high molecular dipole.[3] The most common molecule in the Universe, H2 (molecular hydrogen), is completely invisible to radio telescopes because it has no dipole;[3] its electronic transitions are too energetic for optical telescopes, so detection of H2 required ultraviolet observations with a sounding rocket.[5] Vibrational lines are often not specific to an individual molecule, allowing only the general class to be identified. For example, the vibrational lines of polycyclic aromatic hydrocarbons (PAHs) were identified in 1984,[6] showing the class of molecules is very common in space,[7] but it took until 2021 to identify any specific PAHs through their rotational lines.[8][9]

The carbon star CW Leonis. The visible shells of circumstellar material were ejected by the central star over thousands of years.

One of the richest sources for detecting interstellar molecules is Sagittarius B2 (Sgr B2), a giant molecular cloud near the centre of the Milky Way. About half of the molecules listed below were first found in Sgr B2, and many of the others have been subsequently detected there.[10] A rich source of circumstellar molecules is CW Leonis (also known as IRC +10216), a nearby carbon star, where about 50 molecules have been identified.[11] There is no clear boundary between interstellar and circumstellar media, so both are included in the tables below.

The discipline of astrochemistry includes understanding how these molecules form and explaining their abundances. The extremely low density of the interstellar medium is not conducive to the formation of molecules, making conventional gas-phase reactions between neutral species (atoms or molecules) inefficient. Many regions also have very low temperatures (typically 10 kelvin inside a molecular cloud), further reducing the reaction rates, or high ultraviolet radiation fields, which destroy molecules through photochemistry.[12] Explaining the observed abundances of interstellar molecules requires calculating the balance between formation and destruction rates using gas-phase ion chemistry (often driven by cosmic rays), surface chemistry on cosmic dust, radiative transfer including interstellar extinction, and sophisticated reaction networks.[13] The use of molecular lines to determine the physical properties of astronomical objects is known as molecular astrophysics.

Molecules

The following tables list molecules that have been detected in the interstellar medium or circumstellar matter, grouped by the number of component atoms. Neutral molecules and their molecular ions are listed in separate columns; if there is no entry in the molecule column, only the ionized form has been detected. Designations (names of molecules) are those used in the scientific literature describing the detection; if none was given that field is left empty. Mass is listed in atomic mass units. Deuterated molecules, which contain at least one deuterium (2H) atom, have slightly different masses and are listed in a separate table. The total number of unique species, including distinct ionization states, is indicated in each section header.

Most of the molecules detected so far are organic. The only detected inorganic molecule with five or more atoms is SiH4.[14] Molecules larger than that all have at least one carbon atom, with no N−N or O−O bonds.[14]

Carbon monoxide is frequently used to trace the distribution of mass in molecular clouds.[15]

Diatomic (43)

Template:Sticky header

[[File:Trihydrogen-cation-3D-vdW.png|right|thumb|The [[Protonated molecular hydrogen|Template:Chem]] cation is one of the most abundant ions in the universe. It was first detected in 1993.[56][57]]]

Triatomic (44)

Template:Sticky header

Formaldehyde is an organic molecule that is widely distributed in the interstellar medium.[91]

Four atoms (30)

Template:Sticky header

Methane, the primary component of natural gas, has also been detected on comets and in the atmosphere of several planets in the Solar System.[117]

Five atoms (20)

Template:Sticky header

In the ISM, formamide (above) can combine with methylene to form acetamide.[140]

Six atoms (16)

Template:Sticky header

Acetaldehyde (above) and its isomers vinyl alcohol and ethylene oxide have all been detected in interstellar space.[153]

Seven atoms (13)

Template:Sticky header

The radio signature of acetic acid, a compound found in vinegar, was confirmed in 1997.[162]

Eight atoms (14)

Template:Sticky header

Nine atoms (10)

Template:Sticky header

Template:Multiple image

Ten or more atoms (23)

Template:Sticky header

Deuterated molecules (22)

These molecules all contain one or more deuterium atoms, a heavier isotope of hydrogen. Template:Sticky header

Unconfirmed (15)

Evidence for the existence of the following molecules has been reported in the scientific literature, but the detections either are described as tentative by the authors, or have been challenged by other researchers. They await independent confirmation.

Template:Sticky header

See also

Template:Div col

Template:Div col end

Notes

Template:Reflist

References

  1. Template:Cite book
  2. Template:Cite journal
  3. 3.0 3.1 3.2 3.3 Template:Cite journal
  4. Template:Citation
  5. 5.0 5.1 Template:Citation
  6. Template:Cite journal
  7. Template:Cite journal
  8. 8.0 8.1 8.2 Template:Cite journal
  9. 9.0 9.1 Template:Cite journal
  10. Template:Citation
  11. Template:Cite bookTemplate:Bsn
  12. Template:Citation
  13. Template:Citation
  14. 14.0 14.1 Template:Citation
  15. Template:Citation
  16. 16.0 16.1 16.2 Template:Citation
  17. Template:Citation
  18. Template:Citation
  19. Template:Citation
  20. Template:Cite news
  21. Template:Cite journal
  22. Template:Citation
  23. Template:Citation
  24. Template:Cite web
  25. 25.0 25.1 Template:Citation
  26. 26.0 26.1 26.2 26.3 26.4 26.5 Template:Citation
  27. 27.0 27.1 27.2 27.3 27.4 27.5 27.6 Template:Citation
  28. 28.0 28.1 Template:Citation
  29. 29.0 29.1 29.2 Template:Citation
  30. Template:Citation
  31. Template:Cite news
  32. Template:Cite journal
  33. Template:Citation
  34. 34.00 34.01 34.02 34.03 34.04 34.05 34.06 34.07 34.08 34.09 34.10 34.11 34.12 34.13 34.14 Template:Citation
  35. Template:Citation
  36. Template:Cite news
  37. Template:Cite journal
  38. Template:Citation
  39. Template:Citation
  40. Template:Citation
  41. Template:Citation
  42. Template:Citation
  43. Template:Citation
  44. Template:Cite newsTemplate:Bsn
  45. Template:Citation
  46. Template:Citation
  47. Template:CitationTemplate:Bsn
  48. Template:Cite journal
  49. Template:Citation
  50. Template:Citation
  51. Template:Citation
  52. Template:Citation
  53. 53.0 53.1 53.2 Template:Citation
  54. Template:Cite journal
  55. 55.0 55.1 Template:Citation
  56. 56.0 56.1 Template:Citation
  57. 57.0 57.1 Template:Citation
  58. Template:Citation
  59. Template:Cite journal
  60. Template:Cite journal
  61. Template:Citation
  62. Template:Citation
  63. 63.0 63.1 63.2 63.3 Template:Citation
  64. Template:Citation
  65. Template:Citation
  66. Template:Cite journal
  67. Template:Citation
  68. Template:Citation
  69. Template:Citation
  70. Template:Cite press releaseTemplate:Bsn
  71. Template:Citation
  72. Template:Citation
  73. Template:Citation
  74. 74.0 74.1 Template:Citation
  75. Template:Citation
  76. 76.0 76.1 Template:Citation
  77. 77.0 77.1 77.2 77.3 77.4 77.5 Template:Citation
  78. Template:Citation
  79. 79.0 79.1 Template:Cite journal
  80. Template:Citation
  81. Template:Citation
  82. Template:Citation
  83. Template:Citation
  84. Template:Citation
  85. Template:Citation
  86. Template:Citation
  87. 87.00 87.01 87.02 87.03 87.04 87.05 87.06 87.07 87.08 87.09 Template:Citation
  88. Template:Citation
  89. Template:Citation
  90. Template:Citation
  91. 91.0 91.1 Template:Citation
  92. Template:Citation
  93. Template:Cite journal
  94. 94.0 94.1 Template:Citation
  95. Template:Citation
  96. Template:Citation
  97. Template:Citation
  98. Template:Citation
  99. Template:Citation
  100. Template:Citation
  101. Template:Citation
  102. Template:Cite journal
  103. Template:Citation
  104. Template:Citation
  105. Template:Citation
  106. Template:Citation
  107. Template:Citation
  108. Template:Citation
  109. Template:Cite journal
  110. Template:Citation
  111. Template:Cite journal
  112. Template:Citation
  113. 113.0 113.1 Template:Citation
  114. Template:Citation
  115. Template:Citation
  116. Template:Cite journal
  117. Template:Citation
  118. Template:Cite web
  119. Template:Cite journal
  120. Template:Citation
  121. Template:Citation
  122. 122.0 122.1 122.2 122.3 122.4 122.5 122.6 122.7 Template:Cite press releaseTemplate:Bsn
  123. 123.0 123.1 123.2 Template:Citation
  124. Template:Citation
  125. Template:Citation
  126. Template:Citation
  127. Template:Citation
  128. Template:Citation
  129. 129.0 129.1 129.2 Template:Citation
  130. 130.0 130.1 Template:Citation
  131. Template:Citation
  132. Template:Cite journal
  133. Template:Citation
  134. 134.0 134.1 134.2 Template:Cite journal
  135. Template:Cite journal
  136. Template:Citation
  137. Template:Citation
  138. Template:Cite journal
  139. Template:Citation
  140. 140.0 140.1 140.2 Template:Citation
  141. Template:Citation
  142. Template:Citation
  143. Template:Citation
  144. 144.0 144.1 144.2 144.3 144.4 Template:Citation
  145. Template:Cite news
  146. First Detection of Methyl Alcohol in a Planet-forming Disc. 15 June 2016.
  147. Template:Citation
  148. 148.0 148.1 148.2 Template:Citation
  149. Template:Cite journal
  150. Template:Citation
  151. Template:Citation
  152. 152.0 152.1 152.2 152.3 Template:Citation
  153. 153.0 153.1 Template:Cite press releaseTemplate:Bsn
  154. 154.0 154.1 Template:Citation
  155. Template:Citation
  156. Template:Cite journal
  157. Template:Citation
  158. Template:Cite journal
  159. Template:Cite journal
  160. Template:Citation
  161. Template:Cite journal
  162. 162.0 162.1 Template:Citation
  163. 163.0 163.1 Template:Citation
  164. Template:Cite journal
  165. Template:Cite journal
  166. Template:Cite journal
  167. Template:Citation
  168. 168.0 168.1 Template:Cite journal
  169. Template:Citation
  170. Template:Citation
  171. Template:Citation
  172. 172.0 172.1 Template:Citation
  173. Template:Citation
  174. Template:Citation
  175. Template:Citation
  176. Template:Citation
  177. Template:Citation
  178. 178.0 178.1 178.2 Template:Citation
  179. Template:Citation
  180. Template:Citation
  181. Template:Citation
  182. Template:Citation
  183. Template:Citation
  184. Template:Cite conferenceTemplate:Bsn
  185. Template:Cite journal
  186. Template:Cite journal
  187. Template:Cite journal
  188. 188.0 188.1 Template:Citation
  189. Template:Citation
  190. Template:Cite news
  191. Template:Cite journal
  192. Template:Cite journal
  193. Template:Cite journal
  194. 194.0 194.1 Template:Citation
  195. Template:Citation
  196. Template:Citation
  197. Template:Citation
  198. 198.0 198.1 Template:Citation
  199. 199.0 199.1 199.2 199.3 Template:Citation
  200. Template:Citation
  201. Template:Citation
  202. 202.0 202.1 202.2 202.3 Template:Citation
  203. Template:Cite journal
  204. Template:Citation
  205. Template:Citation
  206. Template:Citation
  207. 207.0 207.1 Template:Cite journal
  208. Template:Citation
  209. Template:Citation
  210. Template:Citation
  211. Template:Citation
  212. Template:Citation
  213. Template:Citation
  214. Template:Citation
  215. Template:Citation
  216. Template:Citation
  217. Template:Cite journal
  218. Template:Citation
  219. Template:Citation - This spectral assignment has not been independently confirmed, and is described by the authors as "tentative" (page L58).
  220. Template:Citation
  221. 221.0 221.1 Template:Cite news
  222. Template:Citation
  223. Template:Cite journal
  224. Template:Cite journal
  225. Template:Cite journal

Template:Molecules detected in outer space
Cite error: <ref> tags exist for a group named "note", but no corresponding <references group="note"/> tag was found