Template:Short description The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals.
∫arsinh(ax)dx=xarsinh(ax)−a2x2+1a+C
∫xarsinh(ax)dx=x2arsinh(ax)2+arsinh(ax)4a2−xa2x2+14a+C
∫x2arsinh(ax)dx=x3arsinh(ax)3−(a2x2−2)a2x2+19a3+C
∫xmarsinh(ax)dx=xm+1arsinh(ax)m+1−am+1∫xm+1a2x2+1dx(m≠−1)
∫arsinh(ax)2dx=2x+xarsinh(ax)2−2a2x2+1arsinh(ax)a+C
∫arsinh(ax)ndx=xarsinh(ax)n−na2x2+1arsinh(ax)n−1a+n(n−1)∫arsinh(ax)n−2dx
∫arsinh(ax)ndx=−xarsinh(ax)n+2(n+1)(n+2)+a2x2+1arsinh(ax)n+1a(n+1)+1(n+1)(n+2)∫arsinh(ax)n+2dx(n≠−1,−2)
∫arcosh(ax)dx=xarcosh(ax)−ax+1ax−1a+C
∫xarcosh(ax)dx=x2arcosh(ax)2−arcosh(ax)4a2−xax+1ax−14a+C
∫x2arcosh(ax)dx=x3arcosh(ax)3−(a2x2+2)ax+1ax−19a3+C
∫xmarcosh(ax)dx=xm+1arcosh(ax)m+1−am+1∫xm+1ax+1ax−1dx(m≠−1)
∫arcosh(ax)2dx=2x+xarcosh(ax)2−2ax+1ax−1arcosh(ax)a+C
∫arcosh(ax)ndx=xarcosh(ax)n−nax+1ax−1arcosh(ax)n−1a+n(n−1)∫arcosh(ax)n−2dx
∫arcosh(ax)ndx=−xarcosh(ax)n+2(n+1)(n+2)+ax+1ax−1arcosh(ax)n+1a(n+1)+1(n+1)(n+2)∫arcosh(ax)n+2dx(n≠−1,−2)
∫artanh(ax)dx=xartanh(ax)+ln(1−a2x2)2a+C
∫xartanh(ax)dx=x2artanh(ax)2−artanh(ax)2a2+x2a+C
∫x2artanh(ax)dx=x3artanh(ax)3+ln(1−a2x2)6a3+x26a+C
∫xmartanh(ax)dx=xm+1artanh(ax)m+1−am+1∫xm+11−a2x2dx(m≠−1)
∫arcoth(ax)dx=xarcoth(ax)+ln(a2x2−1)2a+C
∫xarcoth(ax)dx=x2arcoth(ax)2−arcoth(ax)2a2+x2a+C
∫x2arcoth(ax)dx=x3arcoth(ax)3+ln(a2x2−1)6a3+x26a+C
∫xmarcoth(ax)dx=xm+1arcoth(ax)m+1+am+1∫xm+1a2x2−1dx(m≠−1)
∫arsech(ax)dx=xarsech(ax)−2aarctan1−ax1+ax+C
∫xarsech(ax)dx=x2arsech(ax)2−(1+ax)2a21−ax1+ax+C
∫x2arsech(ax)dx=x3arsech(ax)3−13a3arctan1−ax1+ax−x(1+ax)6a21−ax1+ax+C
∫xmarsech(ax)dx=xm+1arsech(ax)m+1+1m+1∫xm(1+ax)1−ax1+axdx(m≠−1)
∫arcsch(ax)dx=xarcsch(ax)+1aarcoth1a2x2+1+C
∫xarcsch(ax)dx=x2arcsch(ax)2+x2a1a2x2+1+C
∫x2arcsch(ax)dx=x3arcsch(ax)3−16a3arcoth1a2x2+1+x26a1a2x2+1+C
∫xmarcsch(ax)dx=xm+1arcsch(ax)m+1+1a(m+1)∫xm−11a2x2+1dx(m≠−1)
Template:Lists of integrals