List of integrals of exponential functions

From testwiki
Jump to navigation Jump to search

Template:Short description The following is a list of integrals of exponential functions. For a complete list of integral functions, please see the list of integrals.

Indefinite integral

Indefinite integrals are antiderivative functions. A constant (the constant of integration) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.

Integrals of polynomials

Template:Startplainlist

  • xecxdx=ecx(cx1c2) for c0;
  • x2ecxdx=ecx(x2c2xc2+2c3)
  • xnecxdx=1cxnecxncxn1ecxdx=(c)necxc=ecxi=0n(1)in!(ni)!ci+1xni=ecxi=0n(1)nin!i!cni+1xi
  • ecxxdx=ln|x|+n=1(cx)nnn!
  • ecxxndx=1n1(ecxxn1+cecxxn1dx)(for n1)

Template:Endplainlist

Integrals involving only exponential functions

Template:Startplainlist

  • f(x)ef(x)dx=ef(x)
  • ecxdx=1cecx
  • axdx=axlna for a>0, a1

Template:Endplainlist

Integrals involving the error function

In the following formulas, Template:Math is the error function and Template:Math is the exponential integral.

Template:Startplainlist

  • ecxlnxdx=1c(ecxln|x|Ei(cx))
  • xecx2dx=12cecx2
  • ecx2dx=π4cerf(cx)
  • xecx2dx=12cecx2
  • ex2x2dx=ex2xπerf(x)
  • 1σ2πe12(xμσ)2dx=12erf(xμσ2)

Template:Endplainlist

Other integrals

Template:Startplainlist

  • ex2dx=ex2(j=0n1c2j1x2j+1)+(2n1)c2n2ex2x2ndxvalid for any n>0,

    where c2j=135(2j1)2j+1=(2j)!j!22j+1 .

(Note that the value of the expression is independent of the value of Template:Mvar, which is why it does not appear in the integral.)

  • xxxmdx=n=0m(1)n(n+1)n1n!Γ(n+1,lnx)+n=m+1(1)namnΓ(n+1,lnx)(for x>0)

where amn={1if n=0,1n!if m=1,1nj=1njam,njam1,j1otherwise

and Template:Math is the upper incomplete gamma function.

  • 1aeλx+bdx=xb1bλln(aeλx+b) when b0, λ0, and aeλx+b>0.
  • e2λxaeλx+bdx=1a2λ[aeλx+bbln(aeλx+b)] when a0, λ0, and aeλx+b>0.
  • aecx1becx1dx=(ab)log(1becx)bc+x.
  • ex(f(x)+f(x))dx=exf(x)+C

Template:Endplainlist

Template:Startplainlist

  • ex(f(x)(1)ndnf(x)dxn)dx=exk=1n(1)k1dk1f(x)dxk1+C
  • ex(f(x)dnf(x)dxn)dx=exk=1ndk1f(x)dxk1+C

Template:EndplainlistTemplate:Startplainlist

  • eax((a)nf(x)(1)ndnf(x)dxn)dx=eaxk=1n(a)nk(1)k1dk1f(x)dxk1+C

Template:Endplainlist

Definite integrals

Template:Startplainlist

  • 01exlna+(1x)lnbdx=01(ab)xbdx=01axb1xdx=ablnalnbfor a>0, b>0, ab

The last expression is the logarithmic mean.

  • 0eaxdx=1a(Re(a)>0)
  • 0eax2dx=12πa(a>0) (the Gaussian integral)
  • eax2dx=πa(a>0)
  • eax2ebx2dx=πae2ab(a,b>0)
  • e(ax2+bx)dx=πaeb24a(a>0)
  • e(ax2+bx+c)dx=πaeb24ac(a>0)
  • eax2e2bxdx=πaeb2a(a>0) (see Integral of a Gaussian function)
  • xea(xb)2dx=bπa(Re(a)>0)
  • xeax2+bxdx=πb2a3/2eb24a(Re(a)>0)
  • x2eax2dx=12πa3(a>0)
  • x2e(ax2+bx)dx=π(2a+b2)4a5/2eb24a(Re(a)>0)
  • x3e(ax2+bx)dx=π(6a+b2)b8a7/2eb24a(Re(a)>0)
  • 0xneax2dx={Γ(n+12)2(an+12)(n>1, a>0)(2k1)!!2k+1akπa(n=2k, k integer, a>0)k!2(ak+1)(n=2k+1, k integer, a>0)

(the operator !! is the Double factorial)

  • 0xneaxdx={Γ(n+1)an+1(n>1, Re(a)>0)n!an+1(n=0,1,2,, Re(a)>0)
  • 01xneaxdx=n!an+1[1eai=0naii!]
  • 0bxneaxdx=n!an+1[1eabi=0n(ab)ii!]
  • 0eaxbdx=1b a1bΓ(1b)
  • 0xneaxbdx=1b an+1bΓ(n+1b)
  • 0eaxsinbxdx=ba2+b2(a>0)
  • 0eaxcosbxdx=aa2+b2(a>0)
  • 0xeaxsinbxdx=2ab(a2+b2)2(a>0)
  • 0xeaxcosbxdx=a2b2(a2+b2)2(a>0)
  • 0eaxsinbxxdx=arctanba
  • 0eaxebxxdx=lnba
  • 0eaxebxxsinpxdx=arctanbparctanap
  • 0eaxebxxcospxdx=12lnb2+p2a2+p2
  • 0eax(1cosx)x2dx=arccotaa2ln(1a2+1)
  • eax4+bx3+cx2+dx+fdx=efn,m,p=0b4n(4n)!c2m(2m)!d4p(4p)!Γ(3n+m+p+14)a3n+m+p+14 (appears in several models of extended superstring theory in higher dimensions)
  • 02πexcosθdθ=2πI0(x) (Template:Math is the modified Bessel function of the first kind)
  • 02πexcosθ+ysinθdθ=2πI0(x2+y2)
  • 0xs1ex/z1dx=Lis(z)Γ(s),

where Lis(z) is the Polylogarithm.

  • 0sinmxe2πx1dx=14cothm212m
  • 0exlnxdx=γ,

where γ is the Euler–Mascheroni constant which equals the value of a number of definite integrals.

Template:Endplainlist

Finally, a well known result, 02πei(mn)ϕdϕ=2πδm,nfor m,n where δm,n is the Kronecker delta.

See also

References

Template:Reflist Toyesh Prakash Sharma, Etisha Sharma, "Putting Forward Another Generalization Of The Class Of Exponential Integrals And Their Applications.," International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, Issue.2, pp.1-8, 2023.[1]

Further reading

Template:Lists of integrals