List of aperiodic sets of tiles

From testwiki
Jump to navigation Jump to search

Template:Short description

Template:Show

In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles).[1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself. Such a tiling is composed of a single fundamental unit or primitive cell which repeats endlessly and regularly in two independent directions.[2] An example of such a tiling is shown in the adjacent diagram (see the image description for more information). A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic.[3] The tilings obtained from an aperiodic set of tiles are often called aperiodic tilings, though strictly speaking it is the tiles themselves that are aperiodic. (The tiling itself is said to be "nonperiodic".)

The first table explains the abbreviations used in the second table. The second table contains all known aperiodic sets of tiles and gives some additional basic information about each set. This list of tiles is still incomplete.

Explanations

Abbreviation Meaning Explanation
E2 Euclidean plane normal flat plane
H2 hyperbolic plane plane, where the parallel postulate does not hold
E3 Euclidean 3 space space defined by three perpendicular coordinate axes
MLD Mutually locally derivable two tilings are said to be mutually locally derivable from each other, if one tiling can be obtained from the other by a simple local rule (such as deleting or inserting an edge)

List

Template:Dynamic list

Image Name Number of tiles Space Publication Date Refs. Comments
Trilobite and cross tiles 2 E2 1999 [4] Tilings MLD from the chair tilings.
Penrose P1 tiles 6 E2 1974[5] [6] Tilings MLD from the tilings by P2 and P3, Robinson triangles, and "Starfish, ivy leaf, hex".
Penrose P2 tiles 2 E2 1977[7] [8] Tilings MLD from the tilings by P1 and P3, Robinson triangles, and "Starfish, ivy leaf, hex".
Penrose P3 tiles 2 E2 1978[9] [10] Tilings MLD from the tilings by P1 and P2, Robinson triangles, and "Starfish, ivy leaf, hex".
Binary tiles 2 E2 1988 [11][12] Although similar in shape to the P3 tiles, the tilings are not MLD from each other. Developed in an attempt to model the atomic arrangement in binary alloys.
Robinson tiles 6 E2 1971[13] [14] Tiles enforce aperiodicity by forming an infinite hierarchy of square lattices.
Ammann A1 tiles 6 E2 1977[15] [16] Tiles enforce aperiodicity by forming an infinite hierarchal binary tree.
Ammann A2 tiles 2 E2 1986[17] [18]
Ammann A3 tiles 3 E2 1986[17] [18]
Ammann A4 tiles 2 E2 1986[17] [18][19] Tilings MLD with Ammann A5.
Ammann A5 tiles 2 E2 1982[20] [21][22] Tilings MLD with Ammann A4.
No image Penrose hexagon-triangle tiles 3 E2 1997[23] [23][24] Uses mirror images of tiles for tiling.
No image Pegasus tiles 2 E2 2016[25] [25][26] Variant of the Penrose hexagon-triangle tiles. Discovered in 2003 or earlier.
Golden triangle tiles 10 E2 2001[27] [28] Date is for discovery of matching rules. Dual to Ammann A2.
Socolar tiles 3 E2 1989[29] [30][31] Tilings MLD from the tilings by the Shield tiles.
Shield tiles 4 E2 1988[32] [33][34] Tilings MLD from the tilings by the Socolar tiles.
Square triangle tiles 5 E2 1986[35] [36]
Starfish, ivy leaf and hex tiles 3 E2 [37][38][39] Tiling is MLD to Penrose P1, P2, P3, and Robinson triangles.
Robinson triangle 4 E2 [17] Tiling is MLD to Penrose P1, P2, P3, and "Starfish, ivy leaf, hex".
Danzer triangles 6 E2 1996[40] [41]
Pinwheel tiles E2 1994[42][43] [44][45] Date is for publication of matching rules.
Socolar–Taylor tile 1 E2 2010 [46][47] Not a connected set. Aperiodic hierarchical tiling.
No image Wang tiles 20426 E2 1966 [48]
No image Wang tiles 104 E2 2008 [49]
No image Wang tiles 52 E2 1971[13] [50] Tiles enforce aperiodicity by forming an infinite hierarchy of square lattices.
Wang tiles 32 E2 1986 [51] Locally derivable from the Penrose tiles.
No image Wang tiles 24 E2 1986 [51] Locally derivable from the A2 tiling.
Wang tiles 16 E2 1986 [17][52] Derived from tiling A2 and its Ammann bars.
Wang tiles 14 E2 1996 [53][54]
Wang tiles 13 E2 1996 [55][56]
Wang tiles 11 E2 2015 [57] Smallest aperiodic set of Wang tiles.
No image Decagonal Sponge tile 1 E2 2002 [58][59] Porous tile consisting of non-overlapping point sets.
No image Goodman-Strauss strongly aperiodic tiles 85 H2 2005 [60]
No image Goodman-Strauss strongly aperiodic tiles 26 H2 2005 [61]
Böröczky hyperbolic tile 1 Hn 1974[62][63] [61][64] Only weakly aperiodic.
No image Schmitt tile 1 E3 1988 [65] Screw-periodic.
Schmitt–Conway–Danzer tile 1 E3 [65] Screw-periodic and convex.
Socolar–Taylor tile 1 E3 2010 [46][47] Periodic in third dimension.
No image Penrose rhombohedra 2 E3 1981[66] [67][68][69][70][71][72][73]
Mackay–Amman rhombohedra 4 E3 1981 [37] Icosahedral symmetry. These are decorated Penrose rhombohedra with a matching rule that force aperiodicity.
No image Wang cubes 21 E3 1996 [74]
No image Wang cubes 18 E3 1999 [75]
No image Danzer tetrahedra 4 E3 1989[76] [77]
I and L tiles 2 En for all n ≥ 3 1999 [78]
Aperiodic monotile construction diagram, based on Smith (2023)
Aperiodic monotile construction diagram, based on Smith (2023)
Smith–Myers–Kaplan–Goodman-Strauss or "Hat" polytile 1 E2 2023 [79] Mirrored monotiles, the first example of an "einstein".
Aperiodic monotile construction diagram, based on Smith (2023)
Aperiodic monotile construction diagram, based on Smith (2023)
Smith–Myers–Kaplan–Goodman-Strauss or "Spectre" polytile 1 E2 2023 [80] "Strictly chiral" aperiodic monotile, the first example of a real "einstein".
Supertile made of 2 tiles.
TS1 2 E2 2014 [81]

References

Template:Reflist

Template:Tessellation

  1. Template:Citation
  2. Template:Citation
  3. Template:Citation
  4. Template:Citation (preprint available)
  5. Template:Citation
  6. Template:Citation
  7. Template:Citation
  8. Template:Citation
  9. Template:Citation
  10. Template:Citation
  11. Template:Citation
  12. Template:Citation
  13. 13.0 13.1 Template:Citation
  14. Template:Citation
  15. Template:Citation
  16. Template:Citation, according to Template:Citation; cf. Template:Citation
  17. 17.0 17.1 17.2 17.3 17.4 Template:Citation
  18. 18.0 18.1 18.2 Template:Citation
  19. Template:Citation
  20. Template:Citation
  21. Template:Citation
  22. Template:Citation
  23. 23.0 23.1 Template:Citation
  24. Template:Cite arXiv
  25. 25.0 25.1 Template:Cite arXiv
  26. Template:Citation
  27. Template:Citation
  28. Template:Citation
  29. Template:Citation
  30. Template:Citation
  31. Template:Citation
  32. Template:Citation
  33. Template:Citation
  34. Template:Citation
  35. Template:Citation
  36. Template:Citation
  37. 37.0 37.1 Template:Citation
  38. Template:Citation
  39. Template:Citation
  40. Template:Citation
  41. Template:Citation
  42. Template:Citation
  43. Template:Citation
  44. Template:Citation
  45. Template:Citation
  46. 46.0 46.1 Template:Citation
  47. 47.0 47.1 Template:Citation
  48. Template:Citation
  49. Template:Citation
  50. Template:Citation
  51. 51.0 51.1 Template:Citation
  52. Template:Citation
  53. Template:Citation
  54. Template:Citation
  55. Template:Citation
  56. Template:Citation
  57. Template:Citation
  58. Template:Citation
  59. Template:Citation
  60. Template:Citation
  61. 61.0 61.1 Template:Citation
  62. Template:Citation
  63. Template:Citation
  64. Template:Citation
  65. 65.0 65.1 Template:Citation
  66. Template:Citation
  67. Template:Citation
  68. Template:Citation
  69. Template:Citation
  70. Template:Citation
  71. Template:Citation
  72. Template:Citation
  73. Template:Citation
  74. Template:Citation
  75. Template:Citation
  76. Template:Citation
  77. Template:Citation
  78. Template:Citation (preprint available)
  79. Template:Cite arXiv
  80. Template:Cite arXiv
  81. Template:Cite journal