Le Potier's vanishing theorem
Jump to navigation
Jump to search
Template:Short description In algebraic geometry, Le Potier's vanishing theorem is an extension of the Kodaira vanishing theorem, on vector bundles. The theorem states the following[1][2][3][4][5][6][7][8][9] Template:Blockquote
In case of r = 1, and let E is an ample (or positive) line bundle on X, this theorem is equivalent to the Nakano vanishing theorem. Also, Template:Harvtxt found another proof.
Template:Harvtxt generalizes Le Potier's vanishing theorem to k-ample and the statement as follows:Template:R
Template:Harvtxt gave a counterexample, which is as follows:Template:R[10]
See also
Note
References
- Template:Cite journal
- Template:Cite journal
- Template:Cite book
- Template:Cite journal
- Template:Cite book
- Template:Cite journal
- Template:Cite journal
- Template:Cite book
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite journal
- Template:Cite book
- Template:Cite journal
- Template:Cite journal
Further reading
External links
- Template:Citation (OpenContent book)