Lady Windermere's Fan (mathematics)

From testwiki
Jump to navigation Jump to search

Template:Unreferenced In mathematics, Lady Windermere's Fan is a telescopic identity employed to relate global and local error of a numerical algorithm. The name is derived from Oscar Wilde's 1892 play Lady Windermere's Fan, A Play About a Good Woman.

Lady Windermere's Fan for a function of one variable

Let E( τ,t0,y(t0) ) be the exact solution operator so that:

y(t0+τ)=E(τ,t0,y(t0)) y(t0)

with t0 denoting the initial time and y(t) the function to be approximated with a given y(t0).

Further let yn, n, nN be the numerical approximation at time tn, t0<tnT=tN. yn can be attained by means of the approximation operator Φ( hn,tn,y(tn) ) so that:

yn=Φ( hn1,tn1,y(tn1) ) yn1 with hn=tn+1tn

The approximation operator represents the numerical scheme used. For a simple explicit forward Euler method with step width h this would be: ΦEuler( h,tn1,y(tn1) ) yn1=(1+hddt) yn1

The local error dn is then given by:

dn:=D( hn1,tn1,y(tn1) ) yn1:=[Φ( hn1,tn1,y(tn1) )E( hn1,tn1,y(tn1) )] yn1

In abbreviation we write:

Φ(hn):=Φ( hn,tn,y(tn) )
E(hn):=E( hn,tn,y(tn) )
D(hn):=D( hn,tn,y(tn) )

Then Lady Windermere's Fan for a function of a single variable t writes as:

yNy(tN)=j=0N1Φ(hj) (y0y(t0))+n=1N j=nN1Φ(hj) dn

with a global error of yNy(tN)

Explanation

yNy(tN)=yNj=0N1Φ(hj) y(t0)+j=0N1Φ(hj) y(t0)=0y(tN)=yNj=0N1Φ(hj) y(t0)+n=0N1 j=nN1Φ(hj) y(tn)n=1N j=nN1Φ(hj) y(tn)=j=0N1Φ(hj) y(t0)n=NN[j=nN1Φ(hj)] y(tn)=j=0N1Φ(hj) y(t0)y(tN)=j=0N1Φ(hj) y0j=0N1Φ(hj) y(t0)+n=1N j=n1N1Φ(hj) y(tn1)n=1N j=nN1Φ(hj) y(tn)=j=0N1Φ(hj) (y0y(t0))+n=1N j=nN1Φ(hj)[Φ(hn1)E(hn1)] y(tn1)=j=0N1Φ(hj) (y0y(t0))+n=1N j=nN1Φ(hj) dn

See also

Template:Lady Windermere's Fan