Lévy's continuity theorem
Jump to navigation
Jump to search
Template:Short description In probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem,[1] named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions. This theorem is the basis for one approach to prove the central limit theorem and is one of the major theorems concerning characteristic functions.
Statement
Suppose we have Template:Unordered list
If the sequence of characteristic functions converges pointwise to some function
then the following statements become equivalent: Template:Unordered list
Proof
Rigorous proofs of this theorem are available.[1][2]