Kerr–Newman–de–Sitter metric

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Sidebar with collapsible lists

The Kerr–Newman–de–Sitter metric (KNdS)[1][2] is the one of the most general stationary solutions of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass embedded in an expanding universe. It generalizes the Kerr–Newman metric by taking into account the cosmological constant Λ.

Boyer–Lindquist coordinates

Template:Main In those coordinates the local clocks and rulers are at constant r and have no local orbital angular momentum (Lz=0), therefore they are corotating with the frame-dragging velocity relative to the fixed stars. In Template:Nowrap signature and in natural units of G=M=c=ke=1 the KNdS metric is[3][4][5][6]

gtt=3 [a2 sin2θ(a2 Λ cos2θ+3)+a2(Λ r23)+Λ r43 r2+6 r32](a2 Λ+3)2(a2cos2θ+r2)

grr=a2 cos2θ+r2(a2+r2)(1Λ r23)2 r+2

gθθ=3(a2 cos2θ+r2)a2 Λ cos2θ+3

gϕϕ=9 {13(a2+r2)2sin2θ(a2 Λcos2θ+3)a2sin4θ [(a2+r2)(1Λ r2/3)2 r+2]}(a2 Λ+3)2(a2cos2θ+r2)

gtϕ=3 a sin2θ [a2 Λ(a2+r2)cos2θ+a2 Λ r2+Λ r4+6 r3 2](a2 Λ+3)2(a2 cos2θ+r2)

with all the other metric tensor components gμν=0, where a is the black hole's spin parameter, its electric charge, and Λ=3H2[7] the cosmological constant with H as the time-independent Hubble parameter. The electromagnetic 4-potential is

Aμ={3 r (a2 Λ+3)(a2 cos2θ+r2), 0, 0, 3 a r  sin2θ(a2 Λ+3)(a2 cos2θ+r2)}

The frame-dragging angular velocity is

ω=dϕdt=gtϕgϕϕ=a [a2 Λ(a2+r2)cos2θ+a2 Λ r2+6 r+Λ r43 2]a2 sin2θ [a2(Λ r23)+6 r+Λ r43 r23 2]+a2 Λ (a2+r2)2cos2θ+3 (a2+r2)2

and the local frame-dragging velocity relative to constant {r,θ,ϕ} positions (the speed of light at the ergosphere)

ν=gtϕ gtϕ=a2 sin2θ [a2 Λ(a2+r2)cos2θ+a2Λ r2+6 r+Λ r43 2]2(a2 Λ cos2θ+3)(a2+r2a2sin2θ)2[a2(Λ r23)+6 r+Λ r43 r23 2]

The escape velocity (the speed of light at the horizons) relative to the local corotating zero-angular momentum observer is

v=11/gtt=3(a2Λcos2θ+3)(a2+r2a2sin2θ)2[a2(Λr23)+Λr43r2+6r32](a2Λ+3)2(a2cos2θ+r2){a2Λ(a2+r2)2cos2θ+3(a2+r2)2+a2sin2θ[a2(Λr23)+Λr43r2+6r32]}+1

The conserved quantities in the equations of motion

x¨μ=α,β (Γαβμ x˙α x˙β+q Fμβ x˙α gαβ)

where x˙ is the four velocity, q is the test particle's specific charge and F the Maxwell–Faraday tensor

 Fμν=AμxνAνxμ

are the total energy

E=pt=gttt˙+gtϕϕ˙+q At

and the covariant axial angular momentum

Lz=pϕ=gϕϕϕ˙gtϕt˙q Aϕ

The overdot stands for differentiation by the testparticle's proper time τ or the photon's affine parameter, so x˙=dx/dτ, x¨=d2x/dτ2.

Null coordinates

To get grr=0 coordinates we apply the transformation

dt=dudr(a2 Λ/3+1)(a2+r2)(a2+r2)(1Λ r2/3)2 r+2

dϕ=dφa dr(a2 Λ/3+1)(a2+r2)(1Λ r2/3)2 r+2

and get the metric coefficients

gur=3a2 Λ+3

grφ=3 asin2θa2 Λ+3

guu=gtt ,  gθθ=gθθ ,  gφφ=gϕϕ ,  guφ=gtϕ

and all the other gμν=0, with the electromagnetic vector potential

Aμ={3 r (a2 Λ+3)(a2cos2θ+r2),3 r a2(Λ r23)+6 r+Λ r43(r2+2), 0, 3 a r sin2θ(a2 Λ+3)(a2cos2θ+r2)}

Defining t¯=ur ingoing lightlike worldlines give a 45 light cone on a {t¯, r} spacetime diagram.

Horizons and ergospheres

Horizons and ergosheres in the KNdS metric for different M:Λ ratios. The black hole related surfaces are color coded as in here.
Left: horizons, right: ergosheres for M=1, a=9/10, ℧=2/5, Λ=1/9. At this point the black hole's outer ergosphere has joined the cosmic one to form two domes around the black hole.
Unstable orbit at r=2 with the black hole and cosmic parameters as in the image above.

The horizons are at grr=0 and the ergospheres at gtt||guu=0. This can be solved numerically or analytically. Like in the Kerr and Kerr–Newman metrics, the horizons have constant Boyer–Lindquist r, while the ergospheres' radii also depend on the polar angle θ.

This gives 3 positive solutions each (including the black hole's inner and outer horizons and ergospheres as well as the cosmic ones) and a negative solution for the space at r<0 in the antiverse[8][9] behind the ring singularity, which is part of the probably unphysical extended solution of the metric.

With a negative Λ (the anti–de–Sitter variant with an attractive cosmological constant), there are no cosmic horizon and ergosphere, only the black hole-related ones.

In the Nariai limit[10] the black hole's outer horizon and ergosphere coincide with the cosmic ones (in the Schwarzschild–de–Sitter metric to which the KNdS reduces with a==0 that would be the case when Λ=1/9).

Invariants

The Ricci scalar for the KNdS metric is R=4Λ, and the Kretschmann scalar is

K={220a12Λ2cos(6θ)+66a12Λ2cos(8θ)+12a12Λ2cos(10θ)+a12Λ2cos(12θ)+

462a12Λ2+1080a10Λ2r2cos(6θ)+240a10Λ2r2cos(8θ)+24a10Λ2r2cos(10θ)+

3024a10Λ2r2+1920a8Λ2r4cos(6θ)+240a8Λ2r4cos(8θ)+8400a8Λ2r4

1152a6cos(6θ)11520a6+1280a6Λ2r6cos(6θ)+12800a6Λ2r6+207360a4r2

138240a4r2+11520a4Λ2r8+16128a44276480a2r4+368640a2r32+

6144a2Λ2r10104448a2r24+3a4cos(4θ)[165a8Λ2+960a6Λ2r2+2240a4Λ2r4

256a2(910Λ2r6)+256(90r260r2+5Λ2r8+74)]+24a2cos(2θ)[33a10Λ2+

210a8Λ2r2+560a6Λ2r480a4(910Λ2r6)+128a2(90r260r2+5Λ2r8+

74)+256r2(45r2+60r2+Λ2r8174)]+36864r673728r52+

2048Λ2r12+43008r44}÷{12[a2cos(2θ)+a2+2r2]6}.

See also

References

Template:Reflist

Template:Black holes Template:Relativity