Kampé de Fériet function

From testwiki
Jump to navigation Jump to search

Template:Short description In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.

The Kampé de Fériet function is given by

p+qFr+s(a1,,ap:b1,b1;;bq,bq;c1,,cr:d1,d1;;ds,ds;x,y)=m=0n=0(a1)m+n(ap)m+n(c1)m+n(cr)m+n(b1)m(b1)n(bq)m(bq)n(d1)m(d1)n(ds)m(ds)nxmynm!n!.

Applications

The general sextic equation can be solved in terms of Kampé de Fériet functions.[1]

See also

References

Template:Reflist


Template:Analysis-stub