Jacobi transform

From testwiki
Jump to navigation Jump to search

In mathematics, Jacobi transform is an integral transform named after the mathematician Carl Gustav Jacob Jacobi, which uses Jacobi polynomials Pnα,β(x) as kernels of the transform .[1][2][3][4]

The Jacobi transform of a function F(x) is[5]

J{F(x)}=fα,β(n)=11(1x)α (1+x)β Pnα,β(x) F(x) dx

The inverse Jacobi transform is given by

J1{fα,β(n)}=F(x)=n=01δnfα,β(n)Pnα,β(x),whereδn=2α+β+1Γ(n+α+1)Γ(n+β+1)n!(α+β+2n+1)Γ(n+α+β+1)

Some Jacobi transform pairs

Some Jacobi transform pairs
F(x) fα,β(n)
xm, m<n 0
xn n!(α+β+2n+1)δn
Pmα,β(x) δnδm,n
(1+x)aβ (n+αn)2α+a+1Γ(a+1)Γ(α+1)Γ(aβ+1)Γ(α+a+n+2)Γ(aβ+n+1)
(1x)σα, σ>1 2σ+β+1n!Γ(ασ)Γ(σ+1)Γ(n+β+1)Γ(ασ+n)Γ(β+σ+n+2)
(1x)σβPmα,σ(x), σ>1 2α+σ+1m!(nm)!Γ(n+α+1)Γ(α+β+m+n+1)Γ(σ+m+1)Γ(αβ+1)Γ(α+β+n+1)Γ(α+σ+m+n+2)Γ(αβ+m+1)
Some more Jacobi transform pairs
F(x) fα,β(n)
2α+βQ1(1z+Q)α(1+z+Q)β, Q=(12xz+z2)1/2, |z|<1 n=0δnzn
(1x)α(1+x)βddx[(1x)α+1(1+x)β+1ddx]F(x) n(n+α+β+1)fα,β(n)
{(1x)α(1+x)βddx[(1x)α+1(1+x)β+1ddx]}kF(x) (1)knk(n+α+β+1)kfα,β(n)

References

Template:Reflist


Template:Math-physics-stub

  1. Debnath, L. "On Jacobi Transform." Bull. Cal. Math. Soc 55.3 (1963): 113-120.
  2. Debnath, L. "SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS BY JACOBI TRANSFORM." BULLETIN OF THE CALCUTTA MATHEMATICAL SOCIETY 59.3-4 (1967): 155.
  3. Scott, E. J. "Jacobi transforms." (1953).
  4. Template:Cite journal
  5. Debnath, Lokenath, and Dambaru Bhatta. Integral transforms and their applications. CRC press, 2014.