Inversive congruential generator

From testwiki
Jump to navigation Jump to search
A visualization of the algorithm.

Inversive congruential generators are a type of nonlinear congruential pseudorandom number generator, which use the modular multiplicative inverse (if it exists) to generate the next number in a sequence. The standard formula for an inversive congruential generator, modulo some prime q is:

x0=seed,
xi+1={(axi1+c)modqif xi0,cif xi=0.

Such a generator is denoted symbolically as Template:Nobr and is said to be an ICG with parameters q, a, c and seed seed.

Period

The sequence (xn)n0 must have xi=xj after finitely many steps, and since the next element depends only on its direct predecessor, also xi+1=xj+1 etc. The maximum possible period for the modulus q is q itself, i.e. the sequence includes every value from 0 to q βˆ’ 1 before repeating.

A sufficient condition for the sequence to have the maximum possible period is to choose a and c such that the polynomial f(x)=x2cxa𝔽q[x] (polynomial ring over 𝔽q) is primitive. This is not a necessary condition; there are choices of q, a and c for which f(x) is not primitive, but the sequence nevertheless has a period of q. Any polynomial, primitive or not, that leads to a maximal-period sequence is called an inversive maximal-period (IMP) polynomial. Chou describes an algorithm for choosing the parameters a and c to get such polynomials.[1]

Eichenauer-Herrmann, Lehn, Grothe and Niederreiter have shown that inversive congruential generators have good uniformity properties, in particular with regard to lattice structure and serial correlations.

Example

ICG(5, 2, 3, 1) gives the sequence 1, 0, 3, 2, 4, 1, 0, 3, 2, 4, 1, 0, ...

In this example, f(x)=x23x2 is irreducible in 𝔽5[x], as none of 0, 1, 2, 3 or 4 is a root. It can also be verified that x is a primitive element of 𝔽5[x]/(f) and hence f is primitive.

Compound inversive generator

The construction of a compound inversive generator (CIG) relies on combining two or more inversive congruential generators according to the method described below.

Let p1,,pr be distinct prime integers, each pj5. For each index j, 1 ≀ j ≀ r, let (xn)n0 be a sequence of elements of 𝔽pj periodic with period length pj. In other words, {xn(j)0npj}𝔽pj.

For each index j, 1 ≀ j ≀ r, we consider Tj=T/pj, where T=p1pr is the period length of the following sequence (xn)n0.

The sequence (xn)n0 of compound pseudorandom numbers is defined as the sum

xn=(T1xn(1)+T2xn(2)++Trxn(r))modT.

The compound approach allows combining inversive congruential generators, provided they have full period, in parallel generation systems.

Advantages of CIG

The CIG are accepted for practical purposes for a number of reasons.

Firstly, binary sequences produced in this way are free of undesirable statistical deviations. Inversive sequences extensively tested with variety of statistical tests remain stable under the variation of parameter.[2][3][4]

Secondly, there exists a steady and simple way of parameter choice, based on the Chou algorithm[1] that guarantees maximum period length.

Thirdly, compound approach has the same properties as single inversive generators,[5][6] but it also provides period length significantly greater than obtained by a single inversive congruential generator. They seem to be designed for application with multiprocessor parallel hardware platforms.

There exists an algorithm[7] that allows designing compound generators with predictable period length, predictable linear complexity level, with excellent statistical properties of produced bit streams.

The procedure of designing this complex structure starts with defining finite field of p elements and ends with choosing the parameters a and c for each inversive congruential generator being the component of the compound generator. It means that each generator is associated to a fixed IMP polynomial. Such a condition is sufficient for maximum period of each inversive congruential generator[8] and finally for maximum period of the compound generator. The construction of IMP polynomials is the most efficient approach to find parameters for inversive congruential generator with maximum period length.

Discrepancy and its boundaries

Equidistribution and statistical independence properties of the generated sequences, which are very important for their usability in a stochastic simulation, can be analyzed based on the discrepancy of s-tuples of successive pseudorandom numbers with s=1 and s=2 respectively.

The discrepancy computes the distance of a generator from a uniform one. A low discrepancy means that the sequence generated can be used for cryptographic purposes, and the first aim of the inversive congruential generator is to provide pseudorandom numbers.

Definition

For Template:Mvar arbitrary points 𝐭1,,𝐭N1[0,1) the discrepancy is defined by DN(𝐭1,,𝐭N1)=supJ|FN(J)V(J)|, where the supremum is extended over all subintervals Template:Mvar of [0,1)s, FN(J) is N1 times the number of points among 𝐭1,,𝐭N1 falling into Template:Mvar and Template:Tmath denotes the Template:Mvar-dimensional volume of Template:Mvar.

Until now, we had sequences of integers from 0 to Template:Tmath, in order to have sequences of [0,1)s, one can divide a sequences of integers by its period Template:Mvar.

From this definition, we can say that if the sequence 𝐭1,,𝐭N1 is perfectly random then its well distributed on the interval J=[0,1)s then V(J)=1 and all points are in Template:Mvar so FN(J)=N/N=1 hence DN(𝐭1,,𝐭N1)=0 but instead if the sequence is concentrated close to one point then the subinterval Template:Mvar is very small V(j)0 and FN(j)N/N1 so DN(𝐭1,,𝐭N1)=1 Then we have from the better and worst case:

0DN(𝐭1,,𝐭N1)1.

Notations

Some further notation is necessary. For integers k1 and q2 let Ck(q) be the set of nonzero lattice points (h1,,hk)Zk with q/2<hj<q/2 for 1jk.

Define

r(h,q)={qsin(π|h|/q)for hC1(q)1for h=0

and

r(𝐑,q)=j=1kr(hj,q)

for 𝐑=(h1,,hk)Ck(q). For real t the abbreviation e(t)=exp(2πit) is used, and uv stands for the standard inner product of u,v in Rk.

Higher bound

Let N1 and q2 be integers. Let 𝐭n=yn/q[0,1)k with yn{0,1,,q1}k for 0n<N.

Then the discrepancy of the points 𝐭0,,𝐭N1 satisfies

DN(𝐭0,𝐭1,,𝐭N1) ≀ kq + 1N hβ„‚k(q)1r(𝐑,q)|n=0N1e(𝐑𝐭n)|

Lower bound

The discrepancy of N arbitrary points 𝐭1,,𝐭N1[0,1)k satisfies

DN(𝐭0,𝐭1,,𝐭N1)π2N((π+1)l1)j=1kmax(1,hj)|n=0N1e(𝐑𝐭n)|

for any nonzero lattice point 𝐑=(h1,,hk)Zk, where l denotes the number of nonzero coordinates of 𝐑.

These two theorems show that the CIG is not perfect because the discrepancy is greater strictly than a positive value but also the CIG is not the worst generator as the discrepancy is lower than a value less than 1.

There exist also theorems which bound the average value of the discrepancy for Compound Inversive Generators and also ones which take values such that the discrepancy is bounded by some value depending on the parameters. For more details see the original paper.[9]

See also

References

Template:Reflist

  1. ↑ 1.0 1.1 Cite error: Invalid <ref> tag; no text was provided for refs named one
  2. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named two
  3. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named three
  4. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named four
  5. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named five
  6. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named six
  7. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named seven
  8. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named eight
  9. ↑ Cite error: Invalid <ref> tag; no text was provided for refs named nine