Interleave sequence
Jump to navigation
Jump to search
Template:Short description In mathematics, an interleave sequence is obtained by merging two sequences via an in shuffle.
Let be a set, and let and , be two sequences in The interleave sequence is defined to be the sequence . Formally, it is the sequence given by
Properties
- The interleave sequence is convergent if and only if the sequences and are convergent and have the same limit.[1]
- Consider two real numbers a and b greater than zero and smaller than 1. One can interleave the sequences of digits of a and b, which will determine a third number c, also greater than zero and smaller than 1. In this way one obtains an injection from the square Template:Nowrap to the interval (0, 1). Different radixes give rise to different injections; the one for the binary numbers is called the Z-order curve or Morton code.[2]