Indefinite product

From testwiki
Jump to navigation Jump to search

Template:Short description In mathematics, the indefinite product operator is the inverse operator of Q(f(x))=f(x+1)f(x). It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi.

Thus

Q(xf(x))=f(x).

More explicitly, if xf(x)=F(x), then

F(x+1)F(x)=f(x).

If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.

Period rule

If T is a period of function f(x) then

xf(Tx)=Cf(Tx)x1

Connection to indefinite sum

Indefinite product can be expressed in terms of indefinite sum:

xf(x)=exp(xlnf(x))

Alternative usage

Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given.[1] e.g.

k=1nf(k).

Rules

xf(x)g(x)=xf(x)xg(x)
xf(x)a=(xf(x))a
xaf(x)=axf(x)

List of indefinite products

This is a list of indefinite products xf(x). Not all functions have an indefinite product which can be expressed in elementary functions.

xa=Cax
xx=CΓ(x)
xx+1x=Cx
xx+ax=CΓ(x+a)Γ(x)
xxa=CΓ(x)a
xax=CaxΓ(x)
xax=Cax2(x1)
xa1x=CaΓ(x)Γ(x)
xxx=Ceζ(1,x)ζ(1)=Ceψ(2)(z)+z2z2z2ln(2π)=CK(x)
(see K-function)
xΓ(x)=CΓ(x)x1K(x)=CΓ(x)x1ez2ln(2π)z2z2ψ(2)(z)=CG(x)
(see Barnes G-function)
xsexpa(x)=C(sexpa(x))sexpa(x)(lna)x
(see super-exponential function)
xx+a=CΓ(x+a)
xax+b=CaxΓ(x+ba)
xax2+bx=CaxΓ(x)Γ(x+ba)
xx2+1=CΓ(xi)Γ(x+i)
xx+1x=CΓ(xi)Γ(x+i)Γ(x)
xcscxsin(x+1)=Csinx
xsecxcos(x+1)=Ccosx
xcotxtan(x+1)=Ctanx
xtanxcot(x+1)=Ccotx

See also

References

Template:Reflist

Further reading