Incomplete Bessel K function/generalized incomplete gamma function

From testwiki
Jump to navigation Jump to search

Some mathematicians defined this type incomplete-version of Bessel function or this type generalized-version of incomplete gamma function:[1][2][3][4][5]

Kv(x,y)=1extyttv+1dt
γ(α,x;b)=0xtα1etbtdt
Γ(α,x;b)=xtα1etbtdt

Properties

Kv(x,y)=xvΓ(v,x;xy)
Kv(x,y)+Kv(y,x)=2xv2yv2Kv(2xy)
γ(α,x;0)=γ(α,x)
Γ(α,x;0)=Γ(α,x)
γ(α,x;b)+Γ(α,x;b)=2bα2Kα(2b)

One of the advantage of defining this type incomplete-version of Bessel function Kv(x,y) is that even for example the associated Anger–Weber function defined in Digital Library of Mathematical Functions[6] can related:

𝐀ν(z)=1π0eνtzsinhtdt=1π0e(ν+1)tzet2+z2etd(et)=1π1ezt2+z2ttν+1dt=1πKν(z2,z2)

Recurrence relations

Kv(x,y) satisfy this recurrence relation:

xKv1(x,y)+vKv(x,y)yKv+1(x,y)=exy

References

Template:Reflist