Hilbert scheme
Template:Short description In algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by Template:Harvs. Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
Hilbert scheme of projective space
The Hilbert scheme of classifies closed subschemes of projective space in the following sense: For any locally Noetherian scheme Template:Mvar, the set of Template:Mvar-valued points
of the Hilbert scheme is naturally isomorphic to the set of closed subschemes of that are flat over Template:Mvar. The closed subschemes of that are flat over Template:Mvar can informally be thought of as the families of subschemes of projective space parameterized by Template:Mvar. The Hilbert scheme breaks up as a disjoint union of pieces corresponding to the Hilbert scheme of the subschemes of projective space with Hilbert polynomial Template:Mvar. Each of these pieces is projective over .
Construction as a determinantal variety
Grothendieck constructed the Hilbert scheme of -dimensional projective space as a subscheme of a Grassmannian defined by the vanishing of various determinants. Its fundamental property is that for a scheme , it represents the functor whose -valued points are the closed subschemes of that are flat over .
If
is a subscheme of
-dimensional projective space, then
corresponds to a graded ideal
of the polynomial ring
in
variables, with graded pieces
. For sufficiently large
all higher cohomology groups of
with coefficients in
vanish. Using the exact sequence
we have
has dimension
, where
is the Hilbert polynomial of projective space. This can be shown by tensoring the exact sequence above by the locally flat sheaves
, giving an exact sequence where the latter two terms have trivial cohomology, implying the triviality of the higher cohomology of
. Note that we are using the equality of the Hilbert polynomial of a coherent sheaf with the Euler-characteristic of its sheaf cohomology groups.
Pick a sufficiently large value of . The -dimensional space is a subspace of the -dimensional space , so represents a point of the Grassmannian . This will give an embedding of the piece of the Hilbert scheme corresponding to the Hilbert polynomial into this Grassmannian.
It remains to describe the scheme structure on this image, in other words to describe enough elements for the ideal corresponding to it. Enough such elements are given by the conditions that the map Template:Math has rank at most Template:Math for all positive Template:Mvar, which is equivalent to the vanishing of various determinants. (A more careful analysis shows that it is enough just to take Template:Math.)
Universality
Given a closed subscheme over a field with Hilbert polynomial , the Hilbert scheme Template:Math has a universal subscheme flat over such that
- The fibers over closed points are closed subschemes of . For denote this point as .
- is universal with respect to all flat families of subschemes of having Hilbert polynomial . That is, given a scheme and a flat family , there is a unique morphism such that .
Tangent space
The tangent space of the point is given by the global sections of the normal bundle ; that is,
Unobstructedness of complete intersections
For local complete intersections such that , the point is smooth. This implies every deformation of in is unobstructed.
Dimension of tangent space
In the case , the dimension of at is greater than or equal to .
In addition to these properties, Template:Harvs determined for which polynomials the Hilbert scheme is non-empty, and Template:Harvs showed that if is non-empty then it is linearly connected. So two subschemes of projective space are in the same connected component of the Hilbert scheme if and only if they have the same Hilbert polynomial.
Hilbert schemes can have bad singularities, such as irreducible components that are non-reduced at all points. They can also have irreducible components of unexpectedly high dimension. For example, one might expect the Hilbert scheme of Template:Mvar points (more precisely dimension 0, length Template:Mvar subschemes) of a scheme of dimension Template:Mvar to have dimension Template:Mvar, but if Template:Math its irreducible components can have much larger dimension.
Functorial interpretation
There is an alternative interpretation of the Hilbert scheme which leads to a generalization of relative Hilbert schemes parameterizing subschemes of a relative scheme. For a fixed base scheme
, let
and let
be the functor sending a relative scheme
to the set of isomorphism classes of the set
where the equivalence relation is given by the isomorphism classes of
. This construction is functorial by taking pullbacks of families. Given
, there is a family
over
.
Representability for projective maps
If the structure map is projective, then this functor is represented by the Hilbert scheme constructed above. Generalizing this to the case of maps of finite type requires the technology of algebraic spaces developed by Artin.[1]
Relative Hilbert scheme for maps of algebraic spaces
In its greatest generality, the Hilbert functor is defined for a finite type map of algebraic spaces defined over a scheme . Then, the Hilbert functor is defined as[2]
sending T to
- .
This functor is not representable by a scheme, but by an algebraic space. Also, if , and is a finite type map of schemes, their Hilbert functor is represented by an algebraic space.
Examples of Hilbert schemes
Fano schemes of hypersurfaces
One of the motivating examples for the investigation of the Hilbert scheme in general was the Fano scheme of a projective scheme. Given a subscheme of degree , there is a scheme in parameterizing where is a -plane in , meaning it is a degree one embedding of .[3] For smooth surfaces in of degree , the non-empty Fano schemes are smooth and zero-dimensional. This is because lines on smooth surfaces have negative self-intersection.[3]
Hilbert scheme of points
Another common set of examples are the Hilbert schemes of -points of a scheme , typically denoted . For a Riemann surface X, . For there is a nice geometric interpretation where the boundary loci describing the intersection of points can be thought of parametrizing points along with their tangent vectors. For example, is the blowup of the diagonal[4] modulo the symmetric action.
Degree d hypersurfaces
The Hilbert scheme of degree k hypersurfaces in is given by the projectivization . For example, the Hilbert scheme of degree 2 hypersurfaces in is with the universal hypersurface given by
where the underlying ring is bigraded.
Hilbert scheme of curves and moduli of curves
For a fixed genus algebraic curve , the degree of the tri-tensored dualizing sheaf is globally generated, meaning its Euler characteristic is determined by the dimension of the global sections, so
- .
The dimension of this vector space is , hence the global sections of determine an embedding into for every genus curve. Using the Riemann-Roch formula, the associated Hilbert polynomial can be computed as
- .
Then, the Hilbert scheme
parameterizes all genus g curves. Constructing this scheme is the first step in the construction of the moduli stack of algebraic curves. The other main technical tool are GIT quotients, since this moduli space is constructed as the quotient
- ,
where is the sublocus of smooth curves in the Hilbert scheme.
Hilbert scheme of points on a manifold
"Hilbert scheme" sometimes refers to the punctual Hilbert scheme of 0-dimensional subschemes on a scheme. Informally this can be thought of as something like finite collections of points on a scheme, though this picture can be very misleading when several points coincide.
There is a Hilbert–Chow morphism from the reduced Hilbert scheme of points to the Chow variety of cycles taking any 0-dimensional scheme to its associated 0-cycle. Template:Harvs.
The Hilbert scheme of Template:Mvar points on Template:Mvar is equipped with a natural morphism to an Template:Mvar-th symmetric product of Template:Mvar. This morphism is birational for Template:Mvar of dimension at most 2. For Template:Mvar of dimension at least 3 the morphism is not birational for large Template:Mvar: the Hilbert scheme is in general reducible and has components of dimension much larger than that of the symmetric product.
The Hilbert scheme of points on a curve Template:Mvar (a dimension-1 complex manifold) is isomorphic to a symmetric power of Template:Mvar. It is smooth.
The Hilbert scheme of Template:Mvar points on a surface is also smooth (Grothendieck). If , it is obtained from by blowing up the diagonal and then dividing by the action induced by . This was used by Mark Haiman in his proof of the positivity of the coefficients of some Macdonald polynomials.
The Hilbert scheme of a smooth manifold of dimension 3 or more is usually not smooth.
Hilbert schemes and hyperkähler geometry
Let Template:Mvar be a complex Kähler surface with (K3 surface or a torus). The canonical bundle of Template:Mvar is trivial, as follows from the Kodaira classification of surfaces. Hence Template:Mvar admits a holomorphic symplectic form. It was observed by Akira Fujiki (for ) and Arnaud Beauville that is also holomorphically symplectic. This is not very difficult to see, e.g., for . Indeed, is a blow-up of a symmetric square of Template:Mvar. Singularities of are locally isomorphic to . The blow-up of is , and this space is symplectic. This is used to show that the symplectic form is naturally extended to the smooth part of the exceptional divisors of . It is extended to the rest of by Hartogs' principle.
A holomorphically symplectic, Kähler manifold is hyperkähler, as follows from the Calabi–Yau theorem. Hilbert schemes of points on the K3 surface and on a 4-dimensional torus give two series of examples of hyperkähler manifolds: a Hilbert scheme of points on K3 and a generalized Kummer surface.
See also
- Quot scheme
- Castelnuovo–Mumford regularity
- Matsusaka's big theorem
- Moduli of algebraic curves
- Moduli space
- Hilbert modular surface
- Siegel modular variety
References
- Template:Citation
- Template:Springer
- Template:Citation
- Template:Citation
- Template:Citation
- Template:Citation
- Template:Citation
- Template:Citation Reprinted in Template:Citation
- Template:Citation
- Template:Citation
- Template:Citation
- Template:Citation
- Template:Citation
- Template:Citation
Examples and applications
- Bott's formula and enumerative geometry
- The Number of Twisted Cubics on a Quintic Threefold
- Rational curves on Calabi–Yau threefolds: Verifying mirror symmetry predictions