Hermite transform

From testwiki
Jump to navigation Jump to search

In mathematics, the Hermite transform is an integral transform named after the mathematician Charles Hermite that uses Hermite polynomials Hn(x) as kernels of the transform.

The Hermite transform H{F(x)}fH(n) of a function F(x) is H{F(x)}fH(n)=ex2 Hn(x) F(x) dx

The inverse Hermite transform H1{fH(n)} is given by H1{fH(n)}F(x)=n=01π2nn!fH(n)Hn(x)

Some Hermite transform pairs

F(x) fH(n)
xm {m!π2mn(mn2)!,(mn) even and00,otherwise[1]
eax πanea2/4
e2xtt2, |t|<12 π(2t)n
Hm(x) π2nn!δnm
x2Hm(x) 2nn!π{1,n=m+2(n+12),n=m(n+1)(n+2),n=m20,otherwise
ex2Hm(x) (1)pm2p1/2Γ(p+1/2), m+n=2p, p
Hm2(x) {2m+n/2π(mn/2)m!n!(n/2)!,n even and2m0,otherwise[2]
Hm(x)Hp(x) {2kπm!n!p!(km)!(kn)!(kp)!,n+m+p=2k, k; |mp|nm+p0,otherwise[3]
Hn+p+q(x)Hp(x)Hq(x) π2n+p+q(n+p+q)!
dmdxmF(x) fH(n+m)
xdmdxmF(x) nfH(n+m1)+12fH(n+m+1)
ex2ddx[ex2ddxF(x)] 2nfH(n)
F(xx0) πk=0(x0)kk!fH(n+k)
F(x)*G(x) π(1)n[22n+1Γ(n+32)]1fH(n)gH(n)[4]
ez2sin(xz), |z|<12  {π(1)n2(2z)n,nodd0,neven
(1z2)1/2exp[2xyz(x2+y2)z2(1z2)] πznHn(y)[5][6]
Hm(y)Hm+1(x)Hm(x)Hm+1(y)2m+1m!(xy) {πHn(y)nm0n>m

References

Template:Reflist

Sources