Great dodecicosacron

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Uniform polyhedra db File:Great dodecicosacron.stl In geometry, the great dodecicosacron (or great dipteral trisicosahedron) is the dual of the great dodecicosahedron (U63). It has 60 intersecting bow-tie-shaped faces.

Proportions

Each face has two angles of arccos(34+1205)30.48032456536 and two angles of arccos(512+145)81.816127508183. The diagonals of each antiparallelogram intersect at an angle of arccos(5121605)67.70354792646. The dihedral angle equals arccos(44+3561)127.68652342748. The ratio between the lengths of the long edges and the short ones equals 12+125, which is the golden ratio. Part of each face lies inside the solid, hence is invisible in solid models.

References

Template:Mathworld

Template:Polyhedron-stub