Gosper curve

From testwiki
Jump to navigation Jump to search

Template:Short description

A fourth-stage Gosper curve
The line from the red to the green point shows a single step of the Gosper curve construction

The Gosper curve, named after Bill Gosper, also known as the Peano-Gosper Curve[1] and the flowsnake (a spoonerism of snowflake), is a space-filling curve whose limit set is rep-7. It is a fractal curve similar in its construction to the dragon curve and the Hilbert curve.

The Gosper curve can also be used for efficient hierarchical hexagonal clustering and indexing.[2]

Lindenmayer system

The Gosper curve can be represented using an L-system with rules as follows:

  • Angle: 60°
  • Axiom: A
  • Replacement rules:
    • AABB+A++AA+B
    • B+ABBBA++A+B

In this case both A and B mean to move forward, + means to turn left 60 degrees and - means to turn right 60 degrees - using a "turtle"-style program such as Logo.

Properties

The space filled by the curve is called the Gosper island. The first few iterations of it are shown below:

The Gosper Island can tile the plane. In fact, seven copies of the Gosper island can be joined to form a shape that is similar, but scaled up by a factor of Template:Radic in all dimensions. As can be seen from the diagram below, performing this operation with an intermediate iteration of the island leads to a scaled-up version of the next iteration. Repeating this process indefinitely produces a tessellation of the plane. The curve itself can likewise be extended to an infinite curve filling the whole plane.

See also

References

Template:Reflist

Template:Fractals