Genocchi number

From testwiki
Jump to navigation Jump to search

Template:Short description In mathematics, the Genocchi numbers Gn, named after Angelo Genocchi, are a sequence of integers that satisfy the relation

2t1+et=n=0Gntnn!

The first few Genocchi numbers are 0, 1, −1, 0, 1, 0, −3, 0, 17 Template:OEIS, see Template:OEIS2C.

Properties

Gn=2(12n)Bn.

Combinatorial interpretations

The exponential generating function for the signed even Genocchi numbers (−1)nG2n is

ttan(t2)=n1(1)nG2nt2n(2n)!

They enumerate the following objects:

  • Permutations in S2n−1 with descents after the even numbers and ascents after the odd numbers.
  • Permutations π in S2n−2 with 1 ≤ π(2i−1) ≤ 2n−2i and 2n−2i ≤ π(2i) ≤ 2n−2.
  • Pairs (a1,...,an−1) and (b1,...,bn−1) such that ai and bi are between 1 and i and every k between 1 and n−1 occurs at least once among the ai's and bi's.
  • Reverse alternating permutations a1 < a2 > a3 < a4 >...>a2n−1 of [2n−1] whose inversion table has only even entries.

Primes

The only known prime numbers which occur in the Genocchi sequence are 17, at n = 8, and -3, at n = 6 (depending on how primes are defined). It has been proven that no other primes occur in the sequence

See also

References