Friedel's law

From testwiki
Jump to navigation Jump to search

Friedel's law, named after Georges Friedel, is a property of Fourier transforms of real functions.[1]

Given a real function f(x), its Fourier transform

F(k)=+f(x)eikxdx

has the following properties.

  • F(k)=F*(k)

where F* is the complex conjugate of F.

Centrosymmetric points (k,k) are called Friedel's pairs.

The squared amplitude (|F|2) is centrosymmetric:

  • |F(k)|2=|F(k)|2

The phase ϕ of F is antisymmetric:

  • ϕ(k)=ϕ(k).

Friedel's law is used in X-ray diffraction, crystallography and scattering from real potential within the Born approximation. Note that a twin operation (Template:Aka Opération de maclage) is equivalent to an inversion centre and the intensities from the individuals are equivalent under Friedel's law.[2][3][4]

References

Template:Reflist

Template:Crystallography


Template:Crystallography-stub

  1. Template:Cite journal
  2. Template:Cite journal
  3. Friedel G (1904). "Étude sur les groupements cristallins". Extract from Bullettin de la Société de l'Industrie Minérale, Quatrième série, Tomes III et IV. Saint-Étienne: Societè de l'Imprimerie Thèolier J. Thomas et C.
  4. Friedel G. (1923). Bull. Soc. Fr. Minéral. 46:79-95.