Flory–Schulz distribution

From testwiki
Jump to navigation Jump to search

Template:Probability distribution

The Flory–Schulz distribution is a discrete probability distribution named after Paul Flory and Günter Victor Schulz that describes the relative ratios of polymers of different length that occur in an ideal step-growth polymerization process. The probability mass function (pmf) for the mass fraction of chains of length k is: wa(k)=a2k(1a)k1.

In this equation, k is the number of monomers in the chain,[1] and 0<a<1 is an empirically determined constant related to the fraction of unreacted monomer remaining.[2]

The form of this distribution implies is that shorter polymers are favored over longer ones — the chain length is geometrically distributed. Apart from polymerization processes, this distribution is also relevant to the Fischer–Tropsch process that is conceptually related, where it is known as Anderson-Schulz-Flory (ASF) distribution, in that lighter hydrocarbons are converted to heavier hydrocarbons that are desirable as a liquid fuel.

The pmf of this distribution is a solution of the following equation: {(a1)(k+1)wa(k)+kwa(k+1)=0,wa(0)=0,wa(1)=a2.}

References

Template:ProbDistributions