Final functor

From testwiki
Jump to navigation Jump to search

In category theory, the notion of final functor (resp. initial functor) is a generalization of the notion of final object (resp. initial object) in a category.

A functor F:CD is called final if, for any set-valued functor G:DSet, the colimit of G is the same as the colimit of GF. Note that an object d ∈ Ob(D) is a final object in the usual sense if and only if the functor {*}dD is a final functor as defined here.

The notion of initial functor is defined as above, replacing final by initial and colimit by limit.

References

Template:Refbegin

Template:Refend


Template:Cattheory-stub