File:Nearly free electron model Brilouin zone.webm
From testwiki
Jump to navigation
Jump to search
Nearly_free_electron_model_Brilouin_zone.webm (file size: 1.76 MB, MIME type: video/webm)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionNearly free electron model Brilouin zone.webm |
English: Dispersion relation for the "nearly free electron model" (in 2D) as a function of the underlying crystalline structure. |
| Date | |
| Source | https://twitter.com/j_bertolotti/status/1496091333508972544 |
| Author | Jacopo Bertolotti |
| Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
| WEBM development InfoField |
Mathematica 13.0 code
v3 = {0, 0, 1};
sinstep[t_] := Sin[\[Pi]/2 t]^2;
frames1 = Table[
v1 = {0.25 + sinstep[t], 0};
v2 = {0, 0.25 + sinstep[t]}; (*Start at 0.25 stop at 1.25*)
Print["v1=", v1, " v2=", v2];
b1 = ((2 \[Pi])/
v3 . Cross[Join[v1, {0}], Join[v2, {0}] ] Cross[Join[v2, {0}],
v3])[[1 ;; 2]];
b2 = ((2 \[Pi])/
v3 . Cross[Join[v1, {0}], Join[v2, {0}] ] Cross[v3,
Join[v1, {0}]])[[1 ;; 2]];
tmp = VoronoiMesh@
Flatten[Table[n b1 + m b2, {n, -3, 3}, {m, -3, 3}], 1];
pts = MeshCoordinates[tmp];
polys = MeshCells[tmp, 2];
firstBrillouin =
Position[
Table[Total[Norm /@ pts[[polys[[j, 1 ]] ]] ], {j, 1,
Dimensions[polys][[1]]}],
Min@Table[
Total[Norm /@ pts[[polys[[j, 1 ]] ]] ], {j, 1,
Dimensions[polys][[1]]}] ][[1, 1]];
Grid[{{
Graphics[{
Table[Point[n v1 + m v2], {n, -100, 100}, {m, -100, 100}]
}, PlotRange -> {{-10, 10}, {-10, 10}},
PlotLabel -> Framed["Crystal", Background -> White],
LabelStyle -> {Black, Bold}]
,
Show[
Plot3D[
Table[Norm[{x, y} - n b1 - m b2 ]^2, {n, -3, 3}, {m, -3,
3}], {x, -10, 10}, {y, -10, 10},
PlotRange -> {{-10, 10}, {-10, 10}, {0, 20}},
ClippingStyle -> None, PlotPoints -> 50, Mesh -> None,
PlotStyle -> Directive[Orange, Opacity[0.75]],
Lighting -> "Neutral", Boxed -> False, Axes -> False]
,
Graphics3D[{Thick, Black,
Table[Line@
Join[Join[#, {0}] & /@
pts[[polys[[j, 1]] ]], {Join[
pts[[polys[[j, 1]] ]][[1]], {0}]}], {j, 1,
Dimensions[polys][[1]]}]
}],
PlotLabel ->
Framed["Dispersion relation\n(Extended zone scheme)",
Background -> White], LabelStyle -> {Black, Bold}
]
,
Show[
Plot3D[
Table[Norm[{x, y} - n b1 - m b2 ]^2, {n, -3, 3}, {m, -3,
3}], {x, y} \[Element]
Polygon[pts[[polys[[firstBrillouin, 1]] ]] ],
PlotRange -> {{-10, 10}, {-10, 10}, {0, 20}},
ClippingStyle -> None, PlotPoints -> 50, Mesh -> None,
PlotStyle -> Directive[Orange, Opacity[0.75]],
Lighting -> "Neutral", Boxed -> False, Axes -> False]
,
Graphics3D[{Thick, Black,
Table[Line@
Join[Join[#, {0}] & /@
pts[[polys[[j, 1]] ]], {Join[
pts[[polys[[j, 1]] ]][[1]], {0}]}], {j, 1,
Dimensions[polys][[1]]}]
}],
PlotLabel ->
Framed["Dispersion relation\n(First Brillouin zone)",
Background -> White], LabelStyle -> {Black, Bold}
]
}}]
, {t, 0, 1, 1/30}];
Print["Done: 1"]
frames2 = Table[
v1 = {1.25 - 0.25*sinstep[t], 0};
v2 = {0, 1.25 + 0.25*sinstep[t]}; (*Start at 0.25 stop at 1.25*)
Print["v1=", v1, " v2=", v2];
b1 = ((2 \[Pi])/
v3 . Cross[Join[v1, {0}], Join[v2, {0}] ] Cross[Join[v2, {0}],
v3])[[1 ;; 2]];
b2 = ((2 \[Pi])/
v3 . Cross[Join[v1, {0}], Join[v2, {0}] ] Cross[v3,
Join[v1, {0}]])[[1 ;; 2]];
tmp = VoronoiMesh@
Flatten[Table[n b1 + m b2, {n, -3, 3}, {m, -3, 3}], 1];
pts = MeshCoordinates[tmp];
polys = MeshCells[tmp, 2];
firstBrillouin =
Position[
Table[Total[Norm /@ pts[[polys[[j, 1 ]] ]] ], {j, 1,
Dimensions[polys][[1]]}],
Min@Table[
Total[Norm /@ pts[[polys[[j, 1 ]] ]] ], {j, 1,
Dimensions[polys][[1]]}] ][[1, 1]];
Grid[{{
Graphics[{
Table[Point[n v1 + m v2], {n, -100, 100}, {m, -100, 100}]
}, PlotRange -> {{-10, 10}, {-10, 10}},
PlotLabel -> Framed["Crystal", Background -> White],
LabelStyle -> {Black, Bold}]
,
Show[
Plot3D[
Table[Norm[{x, y} - n b1 - m b2 ]^2, {n, -3, 3}, {m, -3,
3}], {x, -10, 10}, {y, -10, 10},
PlotRange -> {{-10, 10}, {-10, 10}, {0, 20}},
ClippingStyle -> None, PlotPoints -> 50, Mesh -> None,
PlotStyle -> Directive[Orange, Opacity[0.75]],
Lighting -> "Neutral", Boxed -> False, Axes -> False]
,
Graphics3D[{Thick, Black,
Table[Line@
Join[Join[#, {0}] & /@
pts[[polys[[j, 1]] ]], {Join[
pts[[polys[[j, 1]] ]][[1]], {0}]}], {j, 1,
Dimensions[polys][[1]]}]
}],
PlotLabel ->
Framed["Dispersion relation\n(Extended zone scheme)",
Background -> White], LabelStyle -> {Black, Bold}
]
,
Show[
Plot3D[
Table[Norm[{x, y} - n b1 - m b2 ]^2, {n, -3, 3}, {m, -3,
3}], {x, y} \[Element]
Polygon[pts[[polys[[firstBrillouin, 1]] ]] ],
PlotRange -> {{-10, 10}, {-10, 10}, {0, 20}},
ClippingStyle -> None, PlotPoints -> 50, Mesh -> None,
PlotStyle -> Directive[Orange, Opacity[0.75]],
Lighting -> "Neutral", Boxed -> False, Axes -> False]
,
Graphics3D[{Thick, Black,
Table[Line@
Join[Join[#, {0}] & /@
pts[[polys[[j, 1]] ]], {Join[
pts[[polys[[j, 1]] ]][[1]], {0}]}], {j, 1,
Dimensions[polys][[1]]}]
}],
PlotLabel ->
Framed["Dispersion relation\n(First Brillouin zone)",
Background -> White], LabelStyle -> {Black, Bold}
]
}}]
, {t, 0, 1, 1/20}];
Print["Done: 2"]
frames3 = Table[
v1 = {1.25, 1.25/2*sinstep[t]};
v2 = {0, 1.25}; (*Start at 0.25 stop at 1.25*)
Print["v1=", v1, " v2=", v2];
b1 = ((2 \[Pi])/
v3 . Cross[Join[v1, {0}], Join[v2, {0}] ] Cross[Join[v2, {0}],
v3])[[1 ;; 2]];
b2 = ((2 \[Pi])/
v3 . Cross[Join[v1, {0}], Join[v2, {0}] ] Cross[v3,
Join[v1, {0}]])[[1 ;; 2]];
tmp = VoronoiMesh@
Flatten[Table[n b1 + m b2, {n, -3, 3}, {m, -3, 3}], 1];
pts = MeshCoordinates[tmp];
polys = MeshCells[tmp, 2];
firstBrillouin =
Position[
Table[Total[Norm /@ pts[[polys[[j, 1 ]] ]] ], {j, 1,
Dimensions[polys][[1]]}],
Min@Table[
Total[Norm /@ pts[[polys[[j, 1 ]] ]] ], {j, 1,
Dimensions[polys][[1]]}] ][[1, 1]];
Grid[{{
Graphics[{
Table[Point[n v1 + m v2], {n, -100, 100}, {m, -100, 100}]
}, PlotRange -> {{-10, 10}, {-10, 10}},
PlotLabel -> Framed["Crystal", Background -> White],
LabelStyle -> {Black, Bold}]
,
Show[
Plot3D[
Table[Norm[{x, y} - n b1 - m b2 ]^2, {n, -3, 3}, {m, -3,
3}], {x, -10, 10}, {y, -10, 10},
PlotRange -> {{-10, 10}, {-10, 10}, {0, 20}},
ClippingStyle -> None, PlotPoints -> 50, Mesh -> None,
PlotStyle -> Directive[Orange, Opacity[0.75]],
Lighting -> "Neutral", Boxed -> False, Axes -> False]
,
Graphics3D[{Thick, Black,
Table[Line@
Join[Join[#, {0}] & /@
pts[[polys[[j, 1]] ]], {Join[
pts[[polys[[j, 1]] ]][[1]], {0}]}], {j, 1,
Dimensions[polys][[1]]}]
}],
PlotLabel ->
Framed["Dispersion relation\n(Extended zone scheme)",
Background -> White], LabelStyle -> {Black, Bold}
]
,
Show[
Plot3D[
Table[Norm[{x, y} - n b1 - m b2 ]^2, {n, -3, 3}, {m, -3,
3}], {x, y} \[Element]
Polygon[pts[[polys[[firstBrillouin, 1]] ]] ],
PlotRange -> {{-10, 10}, {-10, 10}, {0, 20}},
ClippingStyle -> None, PlotPoints -> 50, Mesh -> None,
PlotStyle -> Directive[Orange, Opacity[0.75]],
Lighting -> "Neutral", Boxed -> False, Axes -> False]
,
Graphics3D[{Thick, Black,
Table[Line@
Join[Join[#, {0}] & /@
pts[[polys[[j, 1]] ]], {Join[
pts[[polys[[j, 1]] ]][[1]], {0}]}], {j, 1,
Dimensions[polys][[1]]}]
}],
PlotLabel ->
Framed["Dispersion relation\n(First Brillouin zone)",
Background -> White], LabelStyle -> {Black, Bold}
]
}}]
, {t, 0, 1, 1/20}];
Print["Done: 3"]
Export["/home/jb601/Documents/Physicsfactlet/BrillouinZone.mp4",
Join[
Table[frames1[[1]], {5}],
frames1,
Table[frames1[[-1]], {5}],
frames2,
Table[frames2[[-1]], {5}],
Reverse@frames2,
Table[frames1[[-1]], {5}],
frames3,
Table[frames3[[-1]], {5}],
Reverse@frames3,
Table[frames1[[-1]], {5}],
Reverse@frames1
]
]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
| This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
| The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Captions
Dispersion relation for the "nearly free electron model" (in 2D) as a function of the underlying crystalline structure.
Items portrayed in this file
depicts
22 February 2022
video/webm
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Dimensions | User | Comment | |
|---|---|---|---|---|
| current | 13:37, 23 February 2022 | (1.76 MB) | wikimediacommons>Berto | Uploaded own work with UploadWizard |
File usage
The following page uses this file: