File:Inductive proofs of properties of add, mult from recursive definitions.pdf
From testwiki
Jump to navigation
Jump to search
Original file (2,862 × 3,247 pixels, file size: 75 KB, MIME type: application/pdf)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionInductive proofs of properties of add, mult from recursive definitions.pdf |
English: Shows recursive definitions of addition (+) and multiplication (*) on natural numbers and inductive proofs of commutativity, associativity, distributivity by Peano induction; also indicates which property is used in the proof of which other one. |
| Date | |
| Source | Own work |
| Author | Jochen Burghardt |
| Other versions |
|
| PDF development InfoField |
LaTeX source code
|
|---|
\documentclass[10pt]{article}
\usepackage[pdftex]{color}
\usepackage[paperwidth=485mm,paperheight=550mm]{geometry}
\usepackage{amssymb}
\setlength{\topmargin}{-36mm}
\setlength{\textwidth}{485mm}
\setlength{\textheight}{550mm}
\setlength{\evensidemargin}{0cm}
\setlength{\oddsidemargin}{-23mm}
\setlength{\parindent}{0cm}
\setlength{\parskip}{1ex}
\setlength{\unitlength}{1mm}
\sloppy
\begin{document}
\definecolor{fLb} {rgb}{0.70,0.50,0.50} % label
\definecolor{fCj} {rgb}{0.00,0.00,0.00} % conjecture
\definecolor{fPr} {rgb}{0.50,0.70,0.50} % proof
\definecolor{fRf} {rgb}{0.50,0.50,0.70} % reference
\definecolor{fEq} {rgb}{0.50,0.50,0.50} % proof equality
\definecolor{fLn} {rgb}{0.99,0.00,0.00} % "uses"-line
\definecolor{fLg} {rgb}{0.70,0.70,0.50} % legend
\newcommand{\lm}[1]{% % lemma
\begin{array}{r@{\;}ll}%
#1%
\end{array}%
}
\newcommand{\lb}[1]{% % lemma label
\multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Lemma #1:}}}\\[1ex]%
}
\newcommand{\df}[1]{% % definition label
\multicolumn{3}{l}{\mbox{\textcolor{fLb}{\bf Definition #1:}}}\\[1ex]%
}
\newcommand{\cj}[2]{% % conjecture
& \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#1}$}}\\[1ex]
\multicolumn{1}{l}{\color{fCj}\mbox{\Huge $\mathbf{=}$}}
& \multicolumn{2}{l}{\color{fCj}\mbox{\Huge $\mathbf{#2}$}}\\[1ex]
}
\newcommand{\pr}[1]{% % proof
\multicolumn{3}{l}{%
\mbox{\textcolor{fPr}{Proof by induction on $#1$:}}}\\%
}
\newcommand{\bc}{% % base case
\multicolumn{3}{l}{\mbox{\textcolor{fPr}{Base case:}}}\\%
}
\newcommand{\ic}{% % inductive case
\multicolumn{3}{l}{\mbox{\textcolor{fPr}{Inductive case:}}}\\%
}
\newcommand{\rs}[1]{% % reason
\mbox{\textcolor{fRf}{ by #1}}%
}
\color{fLn}
\begin{picture}(0,0)%
\thicklines%
\put(035,390){\vector(0,-1){50}}% 5 - 7
\put(055,260){\vector(2,-1){90}}% 7 - 11
\put(200,115){\vector(2,-1){90}}% 11 - 12
\put(150,390){\vector(-2,-1){100}}% 6 - 7
\put(310,390){\vector(0,-1){50}}% 8 - 9
\put(310,255){\vector(0,-1){50}}% 9 - 13
\put(280,390){\vector(-1,-2){87}}% 8 - 11
\put(420,390){\line(0,-1){275}}% 10 - 12
\put(420,115){\vector(-2,-1){90}}% 10 - 12
%
\put(035.15,390.15){\line(0,-1){50}}% 5 - 7
\put(055.15,260.15){\line(2,-1){90}}% 7 - 11
\put(200.15,115.15){\line(2,-1){90}}% 11 - 12
\put(150.15,390.15){\line(-2,-1){100}}% 6 - 7
\put(310.15,390.15){\line(0,-1){50}}% 8 - 9
\put(310.15,255.15){\line(0,-1){50}}% 9 - 13
\put(280.15,390.15){\line(-1,-2){87}}% 8 - 11
\put(420.15,390.15){\line(0,-1){275}}% 10 - 12
\put(420.15,115.15){\line(-2,-1){90}}% 10 - 12
%
\put(034.85,389.85){\line(0,-1){50}}% 5 - 7
\put(054.85,259.85){\line(2,-1){90}}% 7 - 11
\put(199.85,114.85){\line(2,-1){90}}% 11 - 12
\put(149.85,389.85){\line(-2,-1){100}}% 6 - 7
\put(309.85,389.85){\line(0,-1){50}}% 8 - 9
\put(309.85,254.85){\line(0,-1){50}}% 9 - 13
\put(279.85,389.85){\line(-1,-2){87}}% 8 - 11
\put(419.85,389.85){\line(0,-1){275}}% 10 - 12
\put(419.85,114.85){\line(-2,-1){90}}% 10 - 12
\end{picture}
\color{fEq}
$\begin{array}[b]{ccccccc}
\rule{65mm}{0mm}
& \rule{65mm}{0mm}
& \rule{65mm}{0mm}
& \rule{65mm}{0mm}
& \rule{65mm}{0mm}
& \rule{65mm}{0mm}
& \rule{65mm}{0mm} \\
%
\lm{
\df{1}
\cj{x+0}{x}
}
%
&
&
%
\lm{
\df{2}
\cj{x+Sy}{S(x+y)}
}
%
&
&
%
\lm{
\df{3}
\cj{x \cdot 0}{0}
}
%
&
&
%
\lm{
\df{4}
\cj{x \cdot Sy}{x \cdot y+x}
}
%
\\
&
&
&
&
&
&
\\[50mm]
%
\lm{
\lb{5}
\cj{0+x}{x}
\pr{x}
\bc
& 0+0 & \\
= & 0 & \rs{Def.\ 1} \\
\ic
& 0+Sx & \\
= & S(0+x) & \rs{Def.\ 2} \\
= & Sx & \rs{I.H.} \\
}
%
&
&
%
\lm{
\lb{6}
\cj{Sx+y}{S(x+y)}
\pr{y}
\bc
& Sx+0 & \\
= & Sx & \rs{Def.\ 1} \\
= & S(x+0) & \rs{Def.\ 1} \\
\ic
& Sx+Sy & \\
= & S(Sx+y) & \rs{Def.\ 2} \\
= & SS(x+y) & \rs{I.H.} \\
= & S(x+Sy) & \rs{Def.\ 2} \\
}
%
&
&
%
\lm{
\lb{8}
\cj{(x+y)+z}{x+(y+z)}
\pr{z}
\bc
& (x+y)+0 & \\
= & x+y & \rs{Def.\ 1} \\
= & x+(y+0) & \rs{Def.\ 1} \\
\ic
& (x+y)+Sz & \\
= & S((x+y)+z) & \rs{Def.\ 2} \\
= & S(x+(y+z)) & \rs{I.H.} \\
= & x+S(y+z) & \rs{Def.\ 2} \\
= & x+(y+Sz) & \rs{Def.\ 2} \\
}
%
&
&
%
\lm{
\lb{10}
\cj{0 \cdot x}{0}
\pr{x}
\bc
& 0 \cdot 0 & \\
= & 0 & \rs{Def.\ 3} \\
\ic
& 0 \cdot Sx & \\
= & 0 \cdot x+0 & \rs{Def.\ 4} \\
= & 0+0 & \rs{I.H.} \\
= & 0 & \rs{Def.\ 1} \\
}
%
\\
&
&
&
&
&
&
\\[50mm]
%
\lm{
\lb{7}
\cj{x+y}{y+x}
\pr{y}
\bc
& x+0 & \\
= & x & \rs{Def.\ 1} \\
= & 0+x & \rs{Lem.\ 5} \\
\ic
& x+Sy & \\
= & S(x+y) & \rs{Def.\ 2} \\
= & S(y+x) & \rs{I.H.} \\
= & Sy+x & \rs{Lem.\ 6} \\
}
%
&
&
&
&
%
\lm{
\lb{9}
\cj{x \cdot (y+z)}{x \cdot y+x \cdot z}
\pr{z}
\bc
& x \cdot (y+0) & \\
= & x \cdot y & \rs{Def.\ 1} \\
= & x \cdot y+0 & \rs{Def.\ 1} \\
= & x \cdot y+x \cdot 0 & \rs{Def.\ 3} \\
\ic
& x \cdot (y+Sz) & \\
= & x \cdot S(y+z) & \rs{Def.\ 2} \\
= & x \cdot (y+z)+x & \rs{Def.\ 4} \\
= & (x \cdot y+x \cdot z)+x & \rs{I.H.} \\
= & x \cdot y+(x \cdot z+x) & \rs{Lem.\ 8} \\
= & x \cdot y+x \cdot Sz & \rs{Def.\ 4} \\
}
%
&
&
\\
&
&
&
&
&
&
\\[50mm]
&
&
%
\lm{
\lb{11}
\cj{Sx \cdot y}{x \cdot y+y}
\pr{y}
\bc
& Sx \cdot 0 & \\
= & 0 & \rs{Def.\ 3} \\
= & 0+0 & \rs{Def.\ 1} \\
= & x \cdot 0+0 & \rs{Def.\ 4} \\
\ic
& Sx \cdot Sy & \\
= & Sx \cdot y+Sx & \rs{Def.\ 4} \\
= & (x \cdot y+y)+Sx & \rs{I.H.} \\
= & S((x \cdot y+y)+x)& \rs{Def.\ 2} \\
= & S(x \cdot y+(y+x))& \rs{Lem.\ 8} \\
= & S(x \cdot y+(x+y))& \rs{Lem.\ 7} \\
= & S((x \cdot y+x)+y)& \rs{Lem.\ 8} \\
= & (x \cdot y+x)+Sy & \rs{Def.\ 2} \\
= & x \cdot Sy+Sy & \rs{Def.\ 4} \\
}
%
&
&
%
\lm{
\lb{13}
\cj{(x \cdot y) \cdot z}{x \cdot (y \cdot z)}
\pr{z}
\bc
& (x \cdot y) \cdot 0 & \\
= & 0 & \rs{Def.\ 3} \\
= & x \cdot 0 & \rs{Def.\ 3} \\
= & x \cdot (y \cdot 0) & \rs{Def.\ 3} \\
\ic
& (x \cdot y) \cdot Sz & \\
= & (x \cdot y) \cdot z+x \cdot y & \rs{Def.\ 4} \\
= & x \cdot (y \cdot z)+x \cdot y & \rs{I.H.} \\
= & x \cdot (y \cdot z+y) & \rs{Lem.\ 9} \\
= & x \cdot (y \cdot Sz) & \rs{Def.\ 4} \\
}
%
&&
\\
&
&
&
&
&
&
\\[50mm]
\color{fLg}
\begin{tabular}{ll|}
\hline
\multicolumn{2}{l|}{\bf Legend:} \\
$S(x)$ & Successor of $x$ \\
Def. & Definition \\
Lem. & Lemma \\
I.H. & Induction Hypothesis \\
\multicolumn{2}{l|}{\bf Binding Priorities:} \\
%\multicolumn{2}{l}{$S$ , $ \cdot $ , $+$} \\
\multicolumn{2}{l|}{$Sx \cdot y+z$ denotes $((S(x)) \cdot y)+z$} \\
\multicolumn{2}{l|}{\bf Used Induction Scheme:} \\
If & $P(0)$ \\
and & $P(x)$ always implies $P(Sx)$, \\
then & always $P(x)$. \\
&\\
\multicolumn{2}{l|}{Red arrow: use of lemma} \\
\multicolumn{2}{l|}{Definition-uses omitted} \\
\end{tabular}
&
&
&
&
%
\lm{
\lb{12}
\cj{x \cdot y}{y \cdot x}
\pr{y}
\bc
& x \cdot 0 & \\
= & 0 & \rs{Def.\ 3} \\
= & 0 \cdot x & \rs{Lem.\ 10} \\
\ic
& x \cdot Sy & \\
= & x \cdot y+x & \rs{Def.\ 4} \\
= & y \cdot x+x & \rs{I.H.} \\
= & Sy \cdot x & \rs{Lem.\ 11} \\
}
%
&
&
\\
\rule{0cm}{0cm}
\\
\end{array}$
\end{document}
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
depicts
some value
24 May 2013
application/pdf
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 19:30, 6 April 2025 | 2,862 × 3,247 (75 KB) | wikimediacommons>Jochen Burghardt | fixed typos, cf. https://en.wikipedia.org/wiki/User_talk:Jochen_Burghardt#Notation_discrepancy_on_image_of_Proofs_involving_the_addition_of_natural_numbers |
File usage
There are no pages that use this file.