Feigenbaum's first constant

From testwiki
Jump to navigation Jump to search

Template:Short description

The first Feigenbaum constant Template:Mvar is the limiting ratio of each bifurcation interval to the next between every period doubling, of a one-parameter map

xi+1=f(xi),

where Template:Math is a function parameterized by the bifurcation parameter Template:Math.

It is given by the limit[1]

δ=limnan1an2anan1=4.669201609,

where Template:Math are discrete values of Template:Math at the Template:Mathth period doubling.

Names

  • Feigenbaum constant
  • Feigenbaum bifurcation velocity
  • delta

Value

Illustration

Non-linear maps

To see how this number arises, consider the real one-parameter map

f(x)=ax2.

Here Template:Math is the bifurcation parameter, Template:Math is the variable. The values of Template:Math for which the period doubles (e.g. the largest value for Template:Math with no period-2 orbit, or the largest Template:Math with no period-4 orbit), are Template:Math, Template:Math etc. These are tabulated below:[2]

Template:Math Period Bifurcation parameter (Template:Math) Ratio Template:Math
1 2 0.75
2 4 1.25
3 8 Template:Val 4.2337
4 16 Template:Val 4.5515
5 32 Template:Val 4.6458
6 64 Template:Val 4.6639
7 128 Template:Val 4.6682
8 256 Template:Val 4.6689

The ratio in the last column converges to the first Feigenbaum constant. The same number arises for the logistic map

f(x)=ax(1x)

with real parameter Template:Math and variable Template:Math. Tabulating the bifurcation values again:[3]

Template:Math Period Bifurcation parameter (Template:Math) Ratio Template:Math
1 2 3
2 4 Template:Val
3 8 Template:Val 4.7514
4 16 Template:Val 4.6562
5 32 Template:Val 4.6683
6 64 Template:Val 4.6686
7 128 Template:Val 4.6680
8 256 Template:Val 4.6768

Fractals

Self-similarity in the Mandelbrot set shown by zooming in on a round feature while panning in the negative-Template:Math direction. The display center pans from (−1, 0) to (−1.31, 0) while the view magnifies from 0.5 × 0.5 to 0.12 × 0.12 to approximate the Feigenbaum ratio.

In the case of the Mandelbrot set for complex quadratic polynomial

f(z)=z2+c

the Feigenbaum constant is the limiting ratio between the diameters of successive circles on the real axis in the complex plane (see animation on the right).

Template:Math Period = Template:Math Bifurcation parameter (Template:Math) Ratio =cn1cn2cncn1
1 2 Template:Val
2 4 Template:Val
3 8 Template:Val 4.2337
4 16 Template:Val 4.5515
5 32 Template:Val 4.6459
6 64 Template:Val 4.6639
7 128 Template:Val 4.6668
8 256 Template:Val 4.6740
9 512 Template:Val 4.6596
10 1024 Template:Val 4.6750
... ... ... ...
Template:Math Template:Val...

Bifurcation parameter is a root point of period-Template:Math component. This series converges to the Feigenbaum point Template:Math = −1.401155...... The ratio in the last column converges to the first Feigenbaum constant.

Julia set for the Feigenbaum point

Other maps also reproduce this ratio; in this sense the Feigenbaum constant in bifurcation theory is analogous to [[Pi (number)|Template:Pi]] in geometry and Template:Math in calculus.

References

Template:Reflist

  1. Template:Cite book
  2. Alligood, p. 503.
  3. Alligood, p. 504.