Existential generalization
Template:Short description Template:Infobox mathematical statement Template:Transformation rules
In predicate logic, existential generalization[1][2] (also known as existential introduction, ∃I) is a valid rule of inference that allows one to move from a specific statement, or one instance, to a quantified generalized statement, or existential proposition. In first-order logic, it is often used as a rule for the existential quantifier () in formal proofs.
Example: "Rover loves to wag his tail. Therefore, something loves to wag its tail."
Example: "Alice made herself a cup of tea. Therefore, Alice made someone a cup of tea."
Example: "Alice made herself a cup of tea. Therefore, someone made someone a cup of tea."
In the Fitch-style calculus:
where is obtained from by replacing all its free occurrences of (or some of them) by .[3]
Quine
According to Willard Van Orman Quine, universal instantiation and existential generalization are two aspects of a single principle, for instead of saying that implies , we could as well say that the denial implies . The principle embodied in these two operations is the link between quantifications and the singular statements that are related to them as instances. Yet it is a principle only by courtesy. It holds only in the case where a term names and, furthermore, occurs referentially.[4]
See also
References
- ↑ Template:Cite book
- ↑ Template:Cite book
- ↑ pg. 347. Jon Barwise and John Etchemendy, Language proof and logic Second Ed., CSLI Publications, 2008.
- ↑ Template:Cite book Here: p.366.