Duflo isomorphism

From testwiki
Jump to navigation Jump to search

Template:No footnotes In mathematics, the Duflo isomorphism is an isomorphism between the center of the universal enveloping algebra of a finite-dimensional Lie algebra and the invariants of its symmetric algebra. It was introduced by Template:Harvs and later generalized to arbitrary finite-dimensional Lie algebras by Kontsevich.

The PoincarΓ©-Birkoff-Witt theorem gives for any Lie algebra 𝔀 a vector space isomorphism from the polynomial algebra S(𝔀) to the universal enveloping algebra U(𝔀). This map is not an algebra homomorphism. It is equivariant with respect to the natural representation of 𝔀 on these spaces, so it restricts to a vector space isomorphism

F:S(𝔀)𝔀U(𝔀)𝔀

where the superscript indicates the subspace annihilated by the action of 𝔀. Both S(𝔀)𝔀 and U(𝔀)𝔀 are commutative subalgebras, indeed U(𝔀)𝔀 is the center of U(𝔀), but F is still not an algebra homomorphism. However, Duflo proved that in some cases we can compose F with a map

G:S(𝔀)𝔀S(𝔀)𝔀

to get an algebra isomorphism

FG:S(𝔀)𝔀U(𝔀)𝔀.

Later, using the Kontsevich formality theorem, Kontsevich showed that this works for all finite-dimensional Lie algebras.

Following Calaque and Rossi, the map G can be defined as follows. The adjoint action of 𝔀 is the map

𝔀End(𝔀)

sending x𝔀 to the operation [x,] on 𝔀. We can treat map as an element of

𝔀End(𝔀)

or, for that matter, an element of the larger space S(𝔀)End(𝔀), since 𝔀S(𝔀). Call this element

adS(𝔀)End(𝔀)

Both S(𝔀) and End(𝔀) are algebras so their tensor product is as well. Thus, we can take powers of ad, say

adkS(𝔀)End(𝔀).

Going further, we can apply any formal power series to ad and obtain an element of S(𝔀)End(𝔀), where S(𝔀) denotes the algebra of formal power series on 𝔀. Working with formal power series, we thus obtain an element

eadeadadS(𝔀)End(𝔀)

Since the dimension of 𝔀 is finite, one can think of End(𝔀) as Mn(ℝ), hence S(𝔀)End(𝔀) is Mn(S(𝔀)) and by applying the determinant map, we obtain an element

J~1/2:=deteadeadadS(𝔀)

which is related to the Todd class in algebraic topology.

Now, 𝔀 acts as derivations on S(𝔀) since any element of 𝔀 gives a translation-invariant vector field on 𝔀. As a result, the algebra S(𝔀) acts on as differential operators on S(𝔀), and this extends to an action of S(𝔀) on S(𝔀). We can thus define a linear map

G:S(𝔀)S(𝔀)

by

G(ψ)=J~1/2ψ

and since the whole construction was invariant, G restricts to the desired linear map

G:S(𝔀)𝔀S(𝔀)𝔀.


Properties

For a nilpotent Lie algebra the Duflo isomorphism coincides with the symmetrization map from symmetric algebra to universal enveloping algebra. For a semisimple Lie algebra the Duflo isomorphism is compatible in a natural way with the Harish-Chandra isomorphism.

References

Template:Reflist

Template:Abstract-algebra-stub