Dual Hahn polynomials
In mathematics, the dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined on a non-uniform lattice and are defined as
for and the parameters are restricted to .
Note that is the rising factorial, otherwise known as the Pochhammer symbol, and is the generalized hypergeometric functions
Template:Harvs give a detailed list of their properties.
Orthogonality
The dual Hahn polynomials have the orthogonality condition
for . Where ,
and
Numerical instability
As the value of increases, the values that the discrete polynomials obtain also increases. As a result, to obtain numerical stability in calculating the polynomials you would use the renormalized dual Hahn polynomial as defined as
for .
Then the orthogonality condition becomes
for
Relation to other polynomials
The Hahn polynomials, , is defined on the uniform lattice , and the parameters are defined as . Then setting the Hahn polynomials become the Chebyshev polynomials. Note that the dual Hahn polynomials have a q-analog with an extra parameter q known as the dual q-Hahn polynomials.
Racah polynomials are a generalization of dual Hahn polynomials.