Draft:The Balkans Continued Fraction

From testwiki
Jump to navigation Jump to search

Template:AFC submission Template:AFC submission

Template:AFC comment


Template:Short description Template:Draft topics Template:AfC topic

The Balkans Continued Fraction Conjecture consists in proving a closed formula found using machine investigation. The conjecture was formulated by David Naccache and Ofer Yifrach-Stav in 2023.[1] [2]

In the following description, G represents Catalan's constant, and Ck denotes Catalan numbers.

The closed formula computes the exact value of the following continued fraction, known as the "Balkans Continued Fraction," for odd j:

Qj,κ,c=j(2j+2κ)+Kn=1(2n(c+n)(j+n1)(1j+2κ+n)j(2j+2κ)+(3+4κ)n+3n2)

1. If j2κ+3 (Trivial)

This case, mentioned here for the sake of completeness, is not part of the conjecture as Qj,κ,c is computed by straightforward finite summation.

Qj,κ,c=j(2j+2κ)+Kn=1j2κ12n(c+n)(j+n1)(1j+2κ+n)j(2j+2κ)+(3+4κ)n+3n2

2. If 3+κj2κ+1 (Trivial if conjectures 1 and 2 hold true)

This case uses the symmetry relation:

Qj,κ,c=Q2(κ+1)j,κ,c

Replace j by j=2(κ+1)j and compute Qj,κ,c using the conjectured formulae given in the next subsections.

3. If j=1 (Conjecture 1)

Define:

Vκ,c,x,y={x+ycif c<22c(2c1)(2(cκ)1)2Vκ,c2,x,y+(8c2+(28κ)c2κ+1)Vκ,c1,x,y,if c2

Γκ,c,x,y=(2c1)!!2G+Vκ,c1,x,yi=0κ1(2(ci)1)

δ=4κ1(2κ1)Cκ1andρ=δ(1)κ(12κ)(2κ)!(2κ3)!!

α=ρV1,κ1,1,2andβ=ρ(2κ3)2V2,κ1,1,12α

And output Q1,κ,c=δ(2c)!Γκ,c,α,β

4. If 3jκ+2 (Conjecture 2)

Proceed in three steps:

Step 1 (involves only j)

For j=3 or j=5, define:

{τ0,3,λ0,3,τ1,3,λ1,3}={1,4,13,143} and {τ0,5,λ0,5,τ1,5,λ1,5}={19,234,17,8}

If j7, define:

ζj=2j+1(j1)!(j2)(j4)andaj=(j1)j(2j5)andbj=(j6)aj1ajj1

pj=(j6)(j4)(j21)4,

dj=6j615j568j4+74j3+89j244j18andej=(3j+1)(j27)+3.

and iterate using the following formulae to compute {τ0,j,λ0,j,τ1,j,λ1,j}:

τ0,j+2=4τ0,jaj(2j3)(3j2)ζjj21andλ0,j+2=4λ0,jaj(2j+1)ej2ζj(j3)(j+1),

τ1,j+2=τ1,jbj3((j3)(j1)1)ζjpjandλ1,j+2=λ1,jbj(j(2j3)1)dj2ζjpj((j2)(2j7)1).

Step 2 (involves both 𝑗 and 𝜅):

Define (for 𝑛 ∈ {0, 1}):

ηn,j,κ=(2κ+2j92n)(2κ+j82n)(2κ+5j)(2κ+j6)

ϕn,j,κ=8κ2+κ(10j488n)+3j2(28+4n)j+68+18n

Un,j,κ={τn,j+λn,jκif κ<2,ηn,j,κUn,j,κ2+ϕn,j,κUn,j,κ1if κ2,

sn,j,κ=κ!(2)3κ2Un,j,κj+2i=0j32(κi)(2κ2i1)2

n,j,κ=(j2κ)(2κ1)((2κj2)(32κ))nsn,j,κ(2κ)!2

Step 3 (involves 𝑗, 𝜅, 𝑐):

Define:

Δj,κ,c={c,j,κif c<22c(2cj)(2c2κ+j2)(2c2κ1)Δj,κ,c2if c2+(8c2+(28κ)c+(j2)(2κj))Δj,κ,c1

fj,κ,c=Cj32Cκ1(j2)(2κ1)(2c1)!!2i=1j12(2c2κ+2i1)(κi+1)

gj,κ,c=(2c)!2j+4κ72i=1j12(2c2i+1)(2κ2i+1)

hj,κ,c=Δj,κ,c1i=0j32(2c2i1)i=0κ1(2c2i1)

Output:

Qj,κ,c=gj,κ,chj,κ,c+fj,κ,cG

Double factorial-free and Cx-free expressions

Note that:

i=1j12(2c2κ+2i1)(κi+1)=(2c2κ+j2)!!(2c2κ1)!!κ!(κj12)!

i=1j12(2c2i+1)(2κ2i+1)=(2c1)!!(2cj)!!(2κ1)!!(2κj)!!

i=0j32(2c2i1)i=0κ1(2c2i1)=(2c1)!!(2cj)!!(2c1)!!(2c2κ1)!!

i=0j32(κi)(2κ2i1)2=k!(κj12)!(2κ1)!!2(2κj)!!2

And the well-known identities:

(2x1)!!=(2x)!2xx!=(2x1)!2x1(x1)! and Cx=(2x)!(x+1)!x!

yield expressions that avoid double factorials. The first identity is always usable because j is odd.

References

  1. Naccache, D., Yifrach-Stav, O. (2023). The Balkans Continued Fraction. arXiv preprint arXiv:2308.06291. Available at: [1](https://arxiv.org/abs/2308.06291)
  2. Template:Cite journal