Dissociation number

From testwiki
Jump to navigation Jump to search
Examples for the definition of the dissociation number

In the mathematical discipline of graph theory, a subset of vertices in a graph G is called dissociation if it induces a subgraph with maximum degree 1. The number of vertices in a maximum cardinality dissociation set in G is called the dissociation number of G, denoted by diss(G). The problem of computing diss(G) (dissociation number problem) was firstly studied by Yannakakis.[1][2] The problem is NP-hard even in the class of bipartite and planar graphs.[3]

An algorithm for computing a 4/3-approximation of the dissociation number in bipartite graphs was published in 2022.[4]

The dissociation number is a special case of the more general Maximum k-dependent Set Problem for k=1. The problem asks for the size of a largest subset S of the vertices of a graph G, so that the induced subgraph G[S] has maximum degree k.

Notes

Template:Reflist

References

Template:Refbegin

Template:Refend