Delta-ring

From testwiki
Jump to navigation Jump to search

Template:Short description Template:For In mathematics, a non-empty collection of sets is called a Template:Delta-ring (pronounced "Template:Em") if it is closed under union, relative complementation, and countable intersection. The name "delta-ring" originates from the German word for intersection, "Durschnitt", which is meant to highlight the ring's closure under countable intersection, in contrast to a [[Sigma-ring|Template:Sigma-ring]] which is closed under countable unions.

Definition

A family of sets is called a Template:Delta-ring if it has all of the following properties:

  1. Closed under finite unions: AB for all A,B,
  2. Closed under relative complementation: AB for all A,B, and
  3. Closed under countable intersections: n=1An if An for all n.

If only the first two properties are satisfied, then is a ring of sets but not a Template:Delta-ring. Every [[Sigma-ring|Template:Sigma-ring]] is a Template:Delta-ring, but not every Template:Delta-ring is a [[Sigma-ring|Template:Sigma-ring]].

Template:Delta-rings can be used instead of σ-algebras in the development of measure theory if one does not wish to allow sets of infinite measure.

Examples

The family 𝒦={S:S is bounded} is a Template:Delta-ring but not a [[Sigma-ring|Template:Sigma-ring]] because n=1[0,n] is not bounded.

See also

References

Template:Reflist Template:Reflist

Template:Mathanalysis-stub