Del in cylindrical and spherical coordinates

From testwiki
Jump to navigation Jump to search

Template:Short description This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Notes

  • This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of ฮธ and ฯ†):
    • The polar angle is denoted by θ[0,π]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
    • The azimuthal angle is denoted by φ[0,2π]: it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
  • The function Template:Nowrap can be used instead of the mathematical function Template:Nowrap owing to its domain and image. The classical arctan function has an image of Template:Nowrap, whereas atan2 is defined to have an image of Template:Nowrap.

Coordinate conversions

Conversion between Cartesian, cylindrical, and spherical coordinates[1]
From
Cartesian Cylindrical Spherical
To Cartesian x=xy=yz=z x=ρcosφy=ρsinφz=z x=rsinθcosφy=rsinθsinφz=rcosθ
Cylindrical ρ=x2+y2φ=arctan(yx)z=z ρ=ρφ=φz=z ρ=rsinθφ=φz=rcosθ
Spherical r=x2+y2+z2θ=arctan(x2+y2z)φ=arctan(yx) r=ρ2+z2θ=arctan(ρz)φ=φ r=rθ=θφ=φ

Note that the operation arctan(AB) must be interpreted as the two-argument inverse tangent, atan2.

Unit vector conversions

Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of destination coordinates[1]
Cartesian Cylindrical Spherical
Cartesian ๐ฑ^=๐ฑ^๐ฒ^=๐ฒ^๐ณ^=๐ณ^ ๐ฑ^=cosφρ^sinφφ^๐ฒ^=sinφρ^+cosφφ^๐ณ^=๐ณ^ ๐ฑ^=sinθcosφ๐ซ^+cosθcosφθ^sinφφ^๐ฒ^=sinθsinφ๐ซ^+cosθsinφθ^+cosφφ^๐ณ^=cosθ๐ซ^sinθθ^
Cylindrical ρ^=x๐ฑ^+y๐ฒ^x2+y2φ^=y๐ฑ^+x๐ฒ^x2+y2๐ณ^=๐ณ^ ρ^=ρ^φ^=φ^๐ณ^=๐ณ^ ρ^=sinθ๐ซ^+cosθθ^φ^=φ^๐ณ^=cosθ๐ซ^sinθθ^
Spherical ๐ซ^=x๐ฑ^+y๐ฒ^+z๐ณ^x2+y2+z2θ^=(x๐ฑ^+y๐ฒ^)z(x2+y2)๐ณ^x2+y2+z2x2+y2φ^=y๐ฑ^+x๐ฒ^x2+y2 ๐ซ^=ρρ^+z๐ณ^ρ2+z2θ^=zρ^ρ๐ณ^ρ2+z2φ^=φ^ ๐ซ^=๐ซ^θ^=θ^φ^=φ^
Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of source coordinates
Cartesian Cylindrical Spherical
Cartesian ๐ฑ^=๐ฑ^๐ฒ^=๐ฒ^๐ณ^=๐ณ^ ๐ฑ^=xρ^yφ^x2+y2๐ฒ^=yρ^+xφ^x2+y2๐ณ^=๐ณ^ ๐ฑ^=x(x2+y2๐ซ^+zθ^)yx2+y2+z2φ^x2+y2x2+y2+z2๐ฒ^=y(x2+y2๐ซ^+zθ^)+xx2+y2+z2φ^x2+y2x2+y2+z2๐ณ^=z๐ซ^x2+y2θ^x2+y2+z2
Cylindrical ρ^=cosφ๐ฑ^+sinφ๐ฒ^φ^=sinφ๐ฑ^+cosφ๐ฒ^๐ณ^=๐ณ^ ρ^=ρ^φ^=φ^๐ณ^=๐ณ^ ρ^=ρ๐ซ^+zθ^ρ2+z2φ^=φ^๐ณ^=z๐ซ^ρθ^ρ2+z2
Spherical ๐ซ^=sinθ(cosφ๐ฑ^+sinφ๐ฒ^)+cosθ๐ณ^θ^=cosθ(cosφ๐ฑ^+sinφ๐ฒ^)sinθ๐ณ^φ^=sinφ๐ฑ^+cosφ๐ฒ^ ๐ซ^=sinθρ^+cosθ๐ณ^θ^=cosθρ^sinθ๐ณ^φ^=φ^ ๐ซ^=๐ซ^θ^=θ^φ^=φ^

Del formula

Table with the del operator in cartesian, cylindrical and spherical coordinates
Operation Cartesian coordinates Template:Math Cylindrical coordinates Template:Math Spherical coordinates Template:Math,
where Template:Math is the polar angle and Template:Math is the azimuthal angleTemplate:Ref
Vector field Template:Math Ax๐ฑ^+Ay๐ฒ^+Az๐ณ^ Aρρ^+Aφφ^+Az๐ณ^ Ar๐ซ^+Aθθ^+Aφφ^
Gradient Template:Math[1] fx๐ฑ^+fy๐ฒ^+fz๐ณ^ fρρ^+1ρfφφ^+fz๐ณ^ fr๐ซ^+1rfθθ^+1rsinθfφφ^
Divergence Template:Math[1] Axx+Ayy+Azz 1ρ(ρAρ)ρ+1ρAφφ+Azz 1r2(r2Ar)r+1rsinθθ(Aθsinθ)+1rsinθAφφ
Curl Template:Math[1] (AzyAyz)๐ฑ^+(AxzAzx)๐ฒ^+(AyxAxy)๐ณ^ (1ρAzφAφz)ρ^+(AρzAzρ)φ^+1ρ((ρAφ)ρAρφ)๐ณ^ 1rsinθ(θ(Aφsinθ)Aθφ)๐ซ^+1r(1sinθArφr(rAφ))θ^+1r(r(rAθ)Arθ)φ^
Laplace operator Template:Math[1] 2fx2+2fy2+2fz2 1ρρ(ρfρ)+1ρ22fφ2+2fz2 1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fφ2
Vector gradient Template:MathTemplate:Ref Axx๐ฑ^๐ฑ^+Axy๐ฑ^๐ฒ^+Axz๐ฑ^๐ณ^+Ayx๐ฒ^๐ฑ^+Ayy๐ฒ^๐ฒ^+Ayz๐ฒ^๐ณ^+Azx๐ณ^๐ฑ^+Azy๐ณ^๐ฒ^+Azz๐ณ^๐ณ^ Aρρρ^ρ^+(1ρAρφAφρ)ρ^φ^+Aρzρ^๐ณ^+Aφρφ^ρ^+(1ρAφφ+Aρρ)φ^φ^+Aφzφ^๐ณ^+Azρ๐ณ^ρ^+1ρAzφ๐ณ^φ^+Azz๐ณ^๐ณ^ Arr๐ซ^๐ซ^+(1rArθAθr)๐ซ^θ^+(1rsinθArφAφr)๐ซ^φ^+Aθrθ^๐ซ^+(1rAθθ+Arr)θ^θ^+(1rsinθAθφcotθAφr)θ^φ^+Aφrφ^๐ซ^+1rAφθφ^θ^+(1rsinθAφφ+cotθAθr+Arr)φ^φ^
Vector Laplacian Template:Math[2] 2Ax๐ฑ^+2Ay๐ฒ^+2Az๐ณ^

(2AρAρρ22ρ2Aφφ)ρ^+(2AφAφρ2+2ρ2Aρφ)φ^+2Az๐ณ^

(2Ar2Arr22r2sinθ(Aθsinθ)θ2r2sinθAφφ)๐ซ^+(2AθAθr2sin2θ+2r2Arθ2cosθr2sin2θAφφ)θ^+(2AφAφr2sin2θ+2r2sinθArφ+2cosθr2sin2θAθφ)φ^

Directional derivative Template:Math[3] ๐€Bx๐ฑ^+๐€By๐ฒ^+๐€Bz๐ณ^ (AρBρρ+AφρBρφ+AzBρzAφBφρ)ρ^+(AρBφρ+AφρBφφ+AzBφz+AφBρρ)φ^+(AρBzρ+AφρBzφ+AzBzz)๐ณ^

(ArBrr+AθrBrθ+AφrsinθBrφAθBθ+AφBφr)๐ซ^+(ArBθr+AθrBθθ+AφrsinθBθφ+AθBrrAφBφcotθr)θ^+(ArBφr+AθrBφθ+AφrsinθBφφ+AφBrr+AφBθcotθr)φ^

Tensor divergence Template:MathTemplate:Ref

(Txxx+Tyxy+Tzxz)๐ฑ^+(Txyx+Tyyy+Tzyz)๐ฒ^+(Txzx+Tyzy+Tzzz)๐ณ^

[Tρρρ+1ρTφρφ+Tzρz+1ρ(TρρTφφ)]ρ^+[Tρφρ+1ρTφφφ+Tzφz+1ρ(Tρφ+Tφρ)]φ^+[Tρzρ+1ρTφzφ+Tzzz+Tρzρ]๐ณ^

[Trrr+2Trrr+1rTθrθ+cotθrTθr+1rsinθTφrφ1r(Tθθ+Tφφ)]๐ซ^+[Trθr+2Trθr+1rTθθθ+cotθrTθθ+1rsinθTφθφ+TθrrcotθrTφφ]θ^+[Trφr+2Trφr+1rTθφθ+1rsinθTφφφ+Tφrr+cotθr(Tθφ+Tφθ)]φ^

Differential displacement Template:Math[1] dx๐ฑ^+dy๐ฒ^+dz๐ณ^ dρρ^+ρdφφ^+dz๐ณ^ dr๐ซ^+rdθθ^+rsinθdφφ^
Differential normal area Template:Math dydz๐ฑ^+dxdz๐ฒ^+dxdy๐ณ^ ρdφdzρ^+dρdzφ^+ρdρdφ๐ณ^ r2sinθdθdφ๐ซ^+rsinθdrdφθ^+rdrdθφ^
Differential volume Template:Math[1] dxdydz ρdρdφdz r2sinθdrdθdφ
Template:Note This page uses θ for the polar angle and φ for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses θ for the azimuthal angle and φ for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch θ and φ in the formulae shown in the table above.
Template:Note Defined in Cartesian coordinates as i๐€๐ži. An alternative definition is ๐žii๐€.
Template:Note Defined in Cartesian coordinates as ๐žii๐“. An alternative definition is i๐“๐ži.

Calculation rules

  1. divgradff2f
  2. curlgradf×f=๐ŸŽ
  3. divcurl๐€(×๐€)=0
  4. curlcurl๐€×(×๐€)=(๐€)2๐€ (Lagrange's formula for del)
  5. 2(fg)=f2g+2fg+g2f
  6. 2(๐๐)=๐2๐๐2๐+2[(๐)๐+๐××๐] (From [4] )

Cartesian derivation

div๐€=limV0V๐€d๐’VdV=Ax(x+dx)dydzAx(x)dydz+Ay(y+dy)dxdzAy(y)dxdz+Az(z+dz)dxdyAz(z)dxdydxdydz=Axx+Ayy+Azz

(curl๐€)x=limS๐ฑ^0S๐€dSdS=Az(y+dy)dzAz(y)dz+Ay(z)dyAy(z+dz)dydydz=AzyAyz

The expressions for (curl๐€)y and (curl๐€)z are found in the same way.

Cylindrical derivation

div๐€=limV0V๐€d๐’VdV=Aρ(ρ+dρ)(ρ+dρ)dϕdzAρ(ρ)ρdϕdz+Aϕ(ϕ+dϕ)dρdzAϕ(ϕ)dρdz+Az(z+dz)dρ(ρ+dρ/2)dϕAz(z)dρ(ρ+dρ/2)dϕρdϕdρdz=1ρ(ρAρ)ρ+1ρAϕϕ+Azz

(curl๐€)ρ=limSρ^0S๐€dSdS=Aϕ(z)(ρ+dρ)dϕAϕ(z+dz)(ρ+dρ)dϕ+Az(ϕ+dϕ)dzAz(ϕ)dz(ρ+dρ)dϕdz=Aϕz+1ρAzϕ

(curl๐€)ϕ=limSϕ^0S๐€dSdS=Az(ρ)dzAz(ρ+dρ)dz+Aρ(z+dz)dρAρ(z)dρdρdz=Azρ+Aρz

(curl๐€)z=limS๐’›^0S๐€dSdS=Aρ(ϕ)dρAρ(ϕ+dϕ)dρ+Aϕ(ρ+dρ)(ρ+dρ)dϕAϕ(ρ)ρdϕρdρdϕ=1ρAρϕ+1ρ(ρAϕ)ρ

curl๐€=(curl๐€)ρρ^+(curl๐€)ϕϕ^+(curl๐€)z๐’›^=(1ρAzϕAϕz)ρ^+(AρzAzρ)ϕ^+1ρ((ρAϕ)ρAρϕ)๐’›^

Spherical derivation

div๐€=limV0V๐€d๐’VdV=Ar(r+dr)(r+dr)dθ(r+dr)sinθdϕAr(r)rdθrsinθdϕ+Aθ(θ+dθ)sin(θ+dθ)rdrdϕAθ(θ)sin(θ)rdrdϕ+Aϕ(ϕ+dϕ)rdrdθAϕ(ϕ)rdrdθdrrdθrsinθdϕ=1r2(r2Ar)r+1rsinθ(Aθsinθ)θ+1rsinθAϕϕ

(curl๐€)r=limS๐’“^0S๐€dSdS=Aθ(ϕ)rdθ+Aϕ(θ+dθ)rsin(θ+dθ)dϕAθ(ϕ+dϕ)rdθAϕ(θ)rsin(θ)dϕrdθrsinθdϕ=1rsinθ(Aϕsinθ)θ1rsinθAθϕ

(curl๐€)θ=limSθ^0S๐€dSdS=Aϕ(r)rsinθdϕ+Ar(ϕ+dϕ)drAϕ(r+dr)(r+dr)sinθdϕAr(ϕ)drdrrsinθdϕ=1rsinθArϕ1r(rAϕ)r

(curl๐€)ϕ=limSϕ^0S๐€dSdS=Ar(θ)dr+Aθ(r+dr)(r+dr)dθAr(θ+dθ)drAθ(r)rdθrdrdθ=1r(rAθ)r1rArθ

curl๐€=(curl๐€)r๐’“^+(curl๐€)θθ^+(curl๐€)ϕϕ^=1rsinθ((Aϕsinθ)θAθϕ)๐’“^+1r(1sinθArϕ(rAϕ)r)θ^+1r((rAθ)rArθ)ϕ^

Unit vector conversion formula

The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector ๐ซ to change in ๐ฎ direction.

Therefore, ๐ซu=su๐ฎ where Template:Mvar is the arc length parameter.

For two sets of coordinate systems ui and vj, according to chain rule, d๐ซ=i๐ซuidui=isui๐ฎ^idui=jsvj๐ฏ^jdvj=jsvj๐ฏ^jivjuidui=ijsvjvjui๐ฏ^jdui.

Now, we isolate the ith component. For ik, let duk=0. Then divide on both sides by dui to get: sui๐ฎ^i=jsvjvjui๐ฏ^j.

See also

References

Template:Reflist