Convex analysis

Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory.
Convex sets
A subset of some vector space is Template:Em if it satisfies any of the following equivalent conditions:
- If is real and then [1]
- If is real and with then

Throughout, will be a map valued in the extended real numbers with a domain that is a convex subset of some vector space. The map is a Template:Em if Template:NumBlk
holds for any real and any with If this remains true of when the defining inequality (Template:EquationNote) is replaced by the strict inequality Template:NumBlk
then is called Template:Em.[1]
Convex functions are related to convex sets. Specifically, the function is convex if and only if its [[Epigraph (mathematics)|Template:Em]]


Template:NumBlk is a convex set.Template:Sfn The epigraphs of extended real-valued functions play a role in convex analysis that is analogous to the role played by graphs of real-valued function in real analysis. Specifically, the epigraph of an extended real-valued function provides geometric intuition that can be used to help formula or prove conjectures.
The domain of a function is denoted by while its Template:Em is the setTemplate:Sfn Template:NumBlk
The function is called Template:Em if and for Template:Em Template:Sfn Alternatively, this means that there exists some in the domain of at which and is also Template:Em equal to In words, a function is Template:Em if its domain is not empty, it never takes on the value and it also is not identically equal to If is a proper convex function then there exist some vector and some such that
- Template:Spacefor every
where denotes the dot product of these vectors.
Convex conjugate
Template:Main The Template:Em of an extended real-valued function (not necessarily convex) is the function from the (continuous) dual space of andTemplate:Sfn
where the brackets denote the canonical duality The Template:Em of is the map defined by for every If denotes the set of -valued functions on then the map defined by is called the Template:Em.
Subdifferential set and the Fenchel-Young inequality
If and then the Template:Em is
For example, in the important special case where is a norm on , it can be shown[proof 1] that if then this definition reduces down to:
For any and which is called the Template:Em. This inequality is an equality (i.e. ) if and only if It is in this way that the subdifferential set is directly related to the convex conjugate
Biconjugate
The Template:Em of a function is the conjugate of the conjugate, typically written as The biconjugate is useful for showing when strong or weak duality hold (via the perturbation function).
For any the inequality follows from the Template:Em. For proper functions, if and only if is convex and lower semi-continuous by Fenchel–Moreau theorem.Template:Sfn[2]
Convex minimization
Template:Main A Template:Em (Template:Em) Template:Em is one of the form
- find when given a convex function and a convex subset
Dual problem
Template:Main In optimization theory, the Template:Em states that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem.
In general given two dual pairs separated locally convex spaces and Then given the function we can define the primal problem as finding such that
If there are constraint conditions, these can be built into the function by letting where is the indicator function. Then let be a perturbation function such that [3]
The Template:Em with respect to the chosen perturbation function is given by
where is the convex conjugate in both variables of
The duality gap is the difference of the right and left hand sides of the inequalityTemplate:Sfn[3][4]
This principle is the same as weak duality. If the two sides are equal to each other, then the problem is said to satisfy strong duality.
There are many conditions for strong duality to hold such as:
- where is the perturbation function relating the primal and dual problems and is the biconjugate of ;Template:Citation needed
- the primal problem is a linear optimization problem;
- Slater's condition for a convex optimization problem.[5][6]
Lagrange duality
For a convex minimization problem with inequality constraints,
- subject to for
the Lagrangian dual problem is
- subject to for
where the objective function is the Lagrange dual function defined as follows:
See also
Notes
References
- Template:Bauschke Combettes Convex Analysis and Monotone Operator Theory in Hilbert Spaces 2nd ed 2017
- Template:Boyd Vandenberghe Convex Optimization 2004
- Template:Cite book
- Template:Cite book
- Template:Rockafellar Wets Variational Analysis 2009 Springer
- Template:Rudin Walter Functional Analysis
- Template:Cite book
- Template:Cite book
- Template:Zălinescu Convex Analysis in General Vector Spaces 2002
External links
Template:Convex analysis and variational analysis
- ↑ 1.0 1.1 Cite error: Invalid
<ref>tag; no text was provided for refs namedRockafellar - ↑ Cite error: Invalid
<ref>tag; no text was provided for refs namedBorweinLewis - ↑ 3.0 3.1 Cite error: Invalid
<ref>tag; no text was provided for refs namedBWG - ↑ Cite error: Invalid
<ref>tag; no text was provided for refs namedCsetnek 2010 - ↑ Cite error: Invalid
<ref>tag; no text was provided for refs namedborwein - ↑ Cite error: Invalid
<ref>tag; no text was provided for refs namedboyd
Cite error: <ref> tags exist for a group named "proof", but no corresponding <references group="proof"/> tag was found