Computable isomorphism
Jump to navigation
Jump to search
In computability theory two sets of natural numbers are computably isomorphic or recursively isomorphic if there exists a total computable and bijective function such that the image of restricted to equals , i.e. .
Further, two numberings and are called computably isomorphic if there exists a computable bijection so that . Computably isomorphic numberings induce the same notion of computability on a set.
Theorems
By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.[1]
References
Template:Comp-sci-theory-stub
Template:Mathlogic-stub
- ↑ Theorem 7.VI, Hartley Rogers, Jr., Theory of recursive functions and effective computability