Complete set of invariants

From testwiki
Jump to navigation Jump to search

In mathematics, a complete set of invariants for a classification problem is a collection of maps

fi:XYi

(where X is the collection of objects being classified, up to some equivalence relation , and the Yi are some sets), such that xx if and only if fi(x)=fi(x) for all i. In words, such that two objects are equivalent if and only if all invariants are equal.[1]

Symbolically, a complete set of invariants is a collection of maps such that

(fi):(X/)(Yi)

is injective.

As invariants are, by definition, equal on equivalent objects, equality of invariants is a necessary condition for equivalence; a complete set of invariants is a set such that equality of these is also sufficient for equivalence. In the context of a group action, this may be stated as: invariants are functions of coinvariants (equivalence classes, orbits), and a complete set of invariants characterizes the coinvariants (is a set of defining equations for the coinvariants).

Examples

Realizability of invariants

A complete set of invariants does not immediately yield a classification theorem: not all combinations of invariants may be realized. Symbolically, one must also determine the image of

fi:XYi.

References

Template:Reflist

  1. Template:Citation. See in particular p. 97.