Classification of low-dimensional real Lie algebras

From testwiki
Jump to navigation Jump to search

Template:Multiple issues This mathematics-related list provides Mubarakzyanov's classification of low-dimensional real Lie algebras, published in Russian in 1963.[1] It complements the article on Lie algebra in the area of abstract algebra.

An English version and review of this classification was published by Popovych et al.[2] in 2003.

Mubarakzyanov's Classification

Let 𝔀n be n-dimensional Lie algebra over the field of real numbers with generators e1,,en, n4.Template:Clarify For each algebra 𝔀 we adduce only non-zero commutators between basis elements.

One-dimensional

Two-dimensional

  • 2𝔀1, abelian ℝ2;
  • 𝔀2.1, solvable π”žπ”£π”£(1)={(ab00):a,bℝ},
[e1,e2]=e1.

Three-dimensional

  • 3𝔀1, abelian, Bianchi I;
  • 𝔀2.1𝔀1, decomposable solvable, Bianchi III;
  • 𝔀3.1, Heisenberg–Weyl algebra, nilpotent, Bianchi II,
[e2,e3]=e1;
  • 𝔀3.2, solvable, Bianchi IV,
[e1,e3]=e1,[e2,e3]=e1+e2;
  • 𝔀3.3, solvable, Bianchi V,
[e1,e3]=e1,[e2,e3]=e2;
[e1,e3]=e1,[e2,e3]=αe2,1α<1,α0;
  • 𝔀3.5, solvable, Bianchi VII,
[e1,e3]=βe1e2,[e2,e3]=e1+βe2,β0;
  • 𝔀3.6, simple, Bianchi VIII, 𝔰𝔩(2,ℝ),
[e1,e2]=e1,[e2,e3]=e3,[e1,e3]=2e2;
  • 𝔀3.7, simple, Bianchi IX, 𝔰𝔬(3),
[e2,e3]=e1,[e3,e1]=e2,[e1,e2]=e3.

Algebra 𝔀3.3 can be considered as an extreme case of 𝔀3.5, when β, forming contraction of Lie algebra.

Over the field β„‚ algebras 𝔀3.5, 𝔀3.7 are isomorphic to 𝔀3.4 and 𝔀3.6, respectively.

Four-dimensional

  • 4𝔀1, abelian;
  • 𝔀2.12𝔀1, decomposable solvable,
[e1,e2]=e1;
  • 2𝔀2.1, decomposable solvable,
[e1,e2]=e1[e3,e4]=e3;
  • 𝔀3.1𝔀1, decomposable nilpotent,
[e2,e3]=e1;
  • 𝔀3.2𝔀1, decomposable solvable,
[e1,e3]=e1,[e2,e3]=e1+e2;
  • 𝔀3.3𝔀1, decomposable solvable,
[e1,e3]=e1,[e2,e3]=e2;
  • 𝔀3.4𝔀1, decomposable solvable,
[e1,e3]=e1,[e2,e3]=αe2,1α<1,α0;
  • 𝔀3.5𝔀1, decomposable solvable,
[e1,e3]=βe1e2[e2,e3]=e1+βe2,β0;
  • 𝔀3.6𝔀1, unsolvable,
[e1,e2]=e1,[e2,e3]=e3,[e1,e3]=2e2;
  • 𝔀3.7𝔀1, unsolvable,
[e1,e2]=e3,[e2,e3]=e1,[e3,e1]=e2;
  • 𝔀4.1, indecomposable nilpotent,
[e2,e4]=e1,[e3,e4]=e2;
  • 𝔀4.2, indecomposable solvable,
[e1,e4]=βe1,[e2,e4]=e2,[e3,e4]=e2+e3,β0;
  • 𝔀4.3, indecomposable solvable,
[e1,e4]=e1,[e3,e4]=e2;
  • 𝔀4.4, indecomposable solvable,
[e1,e4]=e1,[e2,e4]=e1+e2,[e3,e4]=e2+e3;
  • 𝔀4.5, indecomposable solvable,
[e1,e4]=αe1,[e2,e4]=βe2,[e3,e4]=γe3,αβγ0;
  • 𝔀4.6, indecomposable solvable,
[e1,e4]=αe1,[e2,e4]=βe2e3,[e3,e4]=e2+βe3,α>0;
  • 𝔀4.7, indecomposable solvable,
[e2,e3]=e1,[e1,e4]=2e1,[e2,e4]=e2,[e3,e4]=e2+e3;
  • 𝔀4.8, indecomposable solvable,
[e2,e3]=e1,[e1,e4]=(1+β)e1,[e2,e4]=e2,[e3,e4]=βe3,1β1;
  • 𝔀4.9, indecomposable solvable,
[e2,e3]=e1,[e1,e4]=2αe1,[e2,e4]=αe2e3,[e3,e4]=e2+αe3,α0;
  • 𝔀4.10, indecomposable solvable,
[e1,e3]=e1,[e2,e3]=e2,[e1,e4]=e2,[e2,e4]=e1.

Algebra 𝔀4.3 can be considered as an extreme case of 𝔀4.2, when β0, forming contraction of Lie algebra.

Over the field β„‚ algebras 𝔀3.5𝔀1, 𝔀3.7𝔀1, 𝔀4.6, 𝔀4.9, 𝔀4.10 are isomorphic to 𝔀3.4𝔀1, 𝔀3.6𝔀1, 𝔀4.5, 𝔀4.8, 2𝔀2.1, respectively.

See also

Notes

Template:Reflist

References