Chebyshev–Gauss quadrature

From testwiki
Jump to navigation Jump to search

In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind:

1+1f(x)1x2dx

and

1+11x2g(x)dx.

In the first case

1+1f(x)1x2dxi=1nwif(xi)

where

xi=cos(2i12nπ)

and the weight

wi=πn.[1]

In the second case

1+11x2g(x)dxi=1nwig(xi)

where

xi=cos(in+1π)

and the weight

wi=πn+1sin2(in+1π).[2]

See also

References

  1. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, Template:ISBN. Equation 25.4.38.
  2. Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, Template:ISBN. Equation 25.4.40.

Template:Numerical integration