Change of variables (PDE)
Template:Short description Template:For
Often a partial differential equation can be reduced to a simpler form with a known solution by a suitable change of variables.
The article discusses change of variable for PDEs below in two ways:
- by example;
- by giving the theory of the method.
Explanation by example
For example, the following simplified form of the Black–Scholes PDE
is reducible to the heat equation
by the change of variables:
in these steps:
- Replace by and apply the chain rule to get
- Replace and by and to get
- Replace and by and and divide both sides by to get
- Replace by and divide through by to yield the heat equation.
Advice on the application of change of variable to PDEs is given by mathematician J. Michael Steele:[1] Template:Quotation
Technique in general
Suppose that we have a function and a change of variables such that there exist functions such that
and functions such that
and furthermore such that
and
In other words, it is helpful for there to be a bijection between the old set of variables and the new one, or else one has to
- Restrict the domain of applicability of the correspondence to a subject of the real plane which is sufficient for a solution of the practical problem at hand (where again it needs to be a bijection), and
- Enumerate the (zero or more finite list) of exceptions (poles) where the otherwise-bijection fails (and say why these exceptions don't restrict the applicability of the solution of the reduced equation to the original equation)
If a bijection does not exist then the solution to the reduced-form equation will not in general be a solution of the original equation.
We are discussing change of variable for PDEs. A PDE can be expressed as a differential operator applied to a function. Suppose is a differential operator such that
Then it is also the case that
where
and we operate as follows to go from to
- Apply the chain rule to and expand out giving equation .
- Substitute for and for in and expand out giving equation .
- Replace occurrences of by and by to yield , which will be free of and .
In the context of PDEs, Weizhang Huang and Robert D. Russell define and explain the different possible time-dependent transformations in details.[2]
Action-angle coordinates
Often, theory can establish the existence of a change of variables, although the formula itself cannot be explicitly stated. For an integrable Hamiltonian system of dimension , with and , there exist integrals . There exists a change of variables from the coordinates to a set of variables , in which the equations of motion become , , where the functions are unknown, but depend only on . The variables are the action coordinates, the variables are the angle coordinates. The motion of the system can thus be visualized as rotation on torii. As a particular example, consider the simple harmonic oscillator, with and , with Hamiltonian . This system can be rewritten as , , where and are the canonical polar coordinates: and . See V. I. Arnold, `Mathematical Methods of Classical Mechanics', for more details.[3]
References
- ↑ J. Michael Steele, Stochastic Calculus and Financial Applications, Springer, New York, 2001
- ↑ Template:Cite book
- ↑ V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, v. 60, Springer-Verlag, New York, 1989