Cauchy–Hadamard theorem

From testwiki
Jump to navigation Jump to search

Template:Short description In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy,[1] but remained relatively unknown until Hadamard rediscovered it.[2] Hadamard's first publication of this result was in 1888;[3] he also included it as part of his 1892 Ph.D. thesis.[4]

Theorem for one complex variable

Consider the formal power series in one complex variable z of the form f(z)=n=0cn(za)n where a,cn.

Then the radius of convergence R of f at the point a is given by 1R=lim supn(|cn|1/n) where Template:Math denotes the limit superior, the limit as Template:Mvar approaches infinity of the supremum of the sequence values after the nth position. If the sequence values is unbounded so that the Template:Math is ∞, then the power series does not converge near Template:Math, while if the Template:Math is 0 then the radius of convergence is ∞, meaning that the series converges on the entire plane.

Proof

Without loss of generality assume that a=0. We will show first that the power series ncnzn converges for |z|<R, and then that it diverges for |z|>R.

First suppose |z|<R. Let t=1/R not be 0 or ±. For any ε>0, there exists only a finite number of n such that |cn|nt+ε. Now |cn|(t+ε)n for all but a finite number of cn, so the series ncnzn converges if |z|<1/(t+ε). This proves the first part.

Conversely, for ε>0, |cn|(tε)n for infinitely many cn, so if |z|=1/(tε)>R, we see that the series cannot converge because its nth term does not tend to 0.[5]

Theorem for several complex variables

Let α be an n-dimensional vector of natural numbers (α=(α1,,αn)n) with α:=α1++αn, then f(z) converges with radius of convergence ρ=(ρ1,,ρn)n, ρα=ρ1α1ρnαn if and only if lim supα|cα|ραα=1 of the multidimensional power series f(z)=α0cα(za)α:=α10,,αn0cα1,,αn(z1a1)α1(znan)αn.

Proof

From [6]

Set z=a+tρ (zi=ai+tρi). Then

α0cα(za)α=α0cαραtα=μ0(α=μ|cα|ρα)tμ.

This is a power series in one variable t which converges for |t|<1 and diverges for |t|>1. Therefore, by the Cauchy–Hadamard theorem for one variable

lim supμα=μ|cα|ραμ=1.

Setting |cm|ρm=maxα=μ|cα|ρα gives us an estimate

|cm|ρmα=μ|cα|ρα(μ+1)n|cm|ρm.

Because (μ+1)nμ1 as μ

|cm|ρmμα=μ|cα|ραμ|cm|ρmμα=μ|cα|ραμ=|cm|ρmμ(μ).

Therefore

lim supα|cα|ραα=lim supμ|cm|ρmμ=1.

Notes

Template:Reflist

  1. Template:Citation.
  2. Template:Citation. Translated from the Italian by Warren Van Egmond.
  3. Template:Citation.
  4. Template:Citation. Also in Thèses présentées à la faculté des sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques, Paris: Gauthier-Villars et fils, 1892.
  5. Template:Citation Graduate Texts in Mathematics
  6. Template:Citation