Bulk modulus

From testwiki
Jump to navigation Jump to search

Template:Short description Template:Confusing

File:Isostatic pressure deformation.svg
Illustration of uniform compression

The bulk modulus (K or B or k) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume.[1]

Other moduli describe the material's response (strain) to other kinds of stress: the shear modulus describes the response to shear stress, and Young's modulus describes the response to normal (lengthwise stretching) stress. For a fluid, only the bulk modulus is meaningful. For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility.

Definition

The bulk modulus K (which is usually positive) can be formally defined by the equation

K=VdPdV,

where P is pressure, V is the initial volume of the substance, and dP/dV denotes the derivative of pressure with respect to volume. Since the volume is inversely proportional to the density, it follows that

K=ρdPdρ,

where ρ is the initial density and dP/dρ denotes the derivative of pressure with respect to density. The inverse of the bulk modulus gives a substance's compressibility. Generally the bulk modulus is defined at constant temperature as the isothermal bulk modulus, but can also be defined at constant entropy as the adiabatic bulk modulus.

Thermodynamic relation

Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant-temperature (isothermal KT), constant-entropy (isentropic KS), and other variations are possible. Such distinctions are especially relevant for gases.

For an ideal gas, an isentropic process has:

PVγ=constantP(1V)γργ,

where γ is the heat capacity ratio. Therefore, the isentropic bulk modulus KS is given by

KS=γP.

Similarly, an isothermal process of an ideal gas has:

PV=constantP1Vρ,

Therefore, the isothermal bulk modulus KT is given by

KT=P .

When the gas is not ideal, these equations give only an approximation of the bulk modulus. In a fluid, the bulk modulus K and the density ρ determine the speed of sound c (pressure waves), according to the Newton-Laplace formula

c=KSρ.

In solids, KS and KT have very similar values. Solids can also sustain transverse waves: for these materials one additional elastic modulus, for example the shear modulus, is needed to determine wave speeds.

Measurement

It is possible to measure the bulk modulus using powder diffraction under applied pressure. It is a property of a fluid which shows its ability to change its volume under its pressure.

Selected values

Approximate bulk modulus (K) for common materials
Material Bulk modulus in GPa Bulk modulus in Mpsi
Diamond (at 4K) [2] Template:Val Template:Val
Alumina (γ phase)[3] Template:Val ± 14 Template:Val
Steel Template:Val Template:Val
Limestone Template:Val Template:Val
Granite Template:Val Template:Val
Glass (see also diagram below table) Template:Val to Template:Val Template:Val
Graphite 2H (single crystal)[4] Template:Val Template:Val
Sodium chloride Template:Val Template:Val
Shale Template:Val Template:Val
Chalk Template:Val Template:Val
Rubber[5] Template:Val to Template:Val Template:Val to Template:Val
Sandstone Template:Val Template:Val
File:SpiderGraph BulkModulus.gif
Influences of selected glass component additions on the bulk modulus of a specific base glass.[6]

A material with a bulk modulus of 35 GPa loses one percent of its volume when subjected to an external pressure of 0.35 GPa (~Template:Val) (assumed constant or weakly pressure dependent bulk modulus).

Approximate bulk modulus (K) for other substances
β-Carbon nitride Template:Val[7] (predicted)
Water Template:Val (Template:Val) (value increases at higher pressures)
Methanol Template:Val (at 20 °C and 1 Atm)
Solid helium Template:Val (approximate)
Air Template:Val (adiabatic bulk modulus [or isentropic bulk modulus])
Air Template:Val (isothermal bulk modulus)
Spacetime Template:Val (for typical gravitational wave frequencies of 100Hz) [8]

Microscopic origin

Interatomic potential and linear elasticity

The left one shows the interatomic potential and equilibrium position, while the right one shows the force
Interatomic potential and force

Since linear elasticity is a direct result of interatomic interaction, it is related to the extension/compression of bonds. It can then be derived from the interatomic potential for crystalline materials.[9] First, let us examine the potential energy of two interacting atoms. Starting from very far points, they will feel an attraction towards each other. As they approach each other, their potential energy will decrease. On the other hand, when two atoms are very close to each other, their total energy will be very high due to repulsive interaction. Together, these potentials guarantee an interatomic distance that achieves a minimal energy state. This occurs at some distance r0, where the total force is zero:

F=Ur=0

Where U is interatomic potential and r is the interatomic distance. This means the atoms are in equilibrium.

To extend the two atoms approach into solid, consider a simple model, say, a 1-D array of one element with interatomic distance of r, and the equilibrium distance is r0. Its potential energy-interatomic distance relationship has similar form as the two atoms case, which reaches minimal at r0, The Taylor expansion for this is:

u(r)=u(r0)+(ur)r=r0(rr0)+12(2r2u)r=r0(rr0)2+O((rr0)3)

At equilibrium, the first derivative is 0, so the dominant term is the quadratic one. When displacement is small, the higher order terms should be omitted. The expression becomes:

u(r)=u(r0)+12(2r2u)r=r0(rr0)2
F(a)=ur=(2r2u)r=r0(rr0)

Which is clearly linear elasticity.

Note that the derivation is done considering two neighboring atoms, so the Hook's coefficient is:

K=r0dFdr=r0(2r2u)r=r0

This form can be easily extended to 3-D case, with volume per atom(Ω) in place of interatomic distance.

K=Ω0(2Ω2u)Ω=Ω0

See also

References

Template:Reflist

Further reading

Template:Navbox

Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae K= E= λ= G= ν= M= Notes
(K,E) 3K(3KE)9KE 3KE9KE 3KE6K 3K(3K+E)9KE
(K,λ) 9K(Kλ)3Kλ 3(Kλ)2 λ3Kλ 3K2λ
(K,G) 9KG3K+G K2G3 3K2G2(3K+G) K+4G3
(K,ν) 3K(12ν) 3Kν1+ν 3K(12ν)2(1+ν) 3K(1ν)1+ν
(K,M) 9K(MK)3K+M 3KM2 3(MK)4 3KM3K+M
(E,λ) E+3λ+R6 E3λ+R4 2λE+λ+R Eλ+R2 R=E2+9λ2+2Eλ
(E,G) EG3(3GE) G(E2G)3GE E2G1 G(4GE)3GE
(E,ν) E3(12ν) Eν(1+ν)(12ν) E2(1+ν) E(1ν)(1+ν)(12ν)
(E,M) 3ME+S6 ME+S4 3M+ES8 EM+S4M S=±E2+9M210EM

There are two valid solutions.
The plus sign leads to ν0.

The minus sign leads to ν0.

(λ,G) λ+2G3 G(3λ+2G)λ+G λ2(λ+G) λ+2G
(λ,ν) λ(1+ν)3ν λ(1+ν)(12ν)ν λ(12ν)2ν λ(1ν)ν Cannot be used when ν=0λ=0
(λ,M) M+2λ3 (Mλ)(M+2λ)M+λ Mλ2 λM+λ
(G,ν) 2G(1+ν)3(12ν) 2G(1+ν) 2Gν12ν 2G(1ν)12ν
(G,M) M4G3 G(3M4G)MG M2G M2G2M2G
(ν,M) M(1+ν)3(1ν) M(1+ν)(12ν)1ν Mν1ν M(12ν)2(1ν)
2D formulae K2D= E2D= λ2D= G2D= ν2D= M2D= Notes
(K2D,E2D) 2K2D(2K2DE2D)4K2DE2D K2DE2D4K2DE2D 2K2DE2D2K2D 4K2D24K2DE2D
(K2D,λ2D) 4K2D(K2Dλ2D)2K2Dλ2D K2Dλ2D λ2D2K2Dλ2D 2K2Dλ2D
(K2D,G2D) 4K2DG2DK2D+G2D K2DG2D K2DG2DK2D+G2D K2D+G2D
(K2D,ν2D) 2K2D(1ν2D) 2K2Dν2D1+ν2D K2D(1ν2D)1+ν2D 2K2D1+ν2D
(E2D,G2D) E2DG2D4G2DE2D 2G2D(E2D2G2D)4G2DE2D E2D2G2D1 4G2D24G2DE2D
(E2D,ν2D) E2D2(1ν2D) E2Dν2D(1+ν2D)(1ν2D) E2D2(1+ν2D) E2D(1+ν2D)(1ν2D)
(λ2D,G2D) λ2D+G2D 4G2D(λ2D+G2D)λ2D+2G2D λ2Dλ2D+2G2D λ2D+2G2D
(λ2D,ν2D) λ2D(1+ν2D)2ν2D λ2D(1+ν2D)(1ν2D)ν2D λ2D(1ν2D)2ν2D λ2Dν2D Cannot be used when ν2D=0λ2D=0
(G2D,ν2D) G2D(1+ν2D)1ν2D 2G2D(1+ν2D) 2G2Dν2D1ν2D 2G2D1ν2D
(G2D,M2D) M2DG2D 4G2D(M2DG2D)M2D M2D2G2D M2D2G2DM2D



Template:Authority control

  1. Template:Cite web
  2. Page 52 of "Introduction to Solid State Physics, 8th edition" by Charles Kittel, 2005, Template:ISBN
  3. Template:Cite journal
  4. Template:Cite web
  5. Template:Cite web
  6. Template:Cite web
  7. Liu, A. Y.; Cohen, M. L. (1989). "Prediction of New Low Compressibility Solids". Science. 245 (4920): 841–842.
  8. Beau, M. R. (2018). "On the nature of space-time, cosmological inflation, and expansion of the universe". Preprint. DOI:10.13140/RG.2.2.16796.95364
  9. Template:Cite book