Bretherton equation
In mathematics, the Bretherton equation is a nonlinear partial differential equation introduced by Francis Bretherton in 1964:[1]
with integer and While and denote partial derivatives of the scalar field
The original equation studied by Bretherton has quadratic nonlinearity, Nayfeh treats the case with two different methods: Whitham's averaged Lagrangian method and the method of multiple scales.[2]
The Bretherton equation is a model equation for studying weakly-nonlinear wave dispersion. It has been used to study the interaction of harmonics by nonlinear resonance.[3][4] Bretherton obtained analytic solutions in terms of Jacobi elliptic functions.[1][5]
Variational formulations
The Bretherton equation derives from the Lagrangian density:[6]
through the Euler–Lagrange equation:
The equation can also be formulated as a Hamiltonian system:[7]
in terms of functional derivatives involving the Hamiltonian
with the Hamiltonian density – consequently The Hamiltonian is the total energy of the system, and is conserved over time.[7][8]