Analytically irreducible ring

From testwiki
Jump to navigation Jump to search

In algebra, an analytically irreducible ring is a local ring whose completion has no zero divisors. Geometrically this corresponds to a variety with only one analytic branch at a point.

Template:Harvtxt proved that if a local ring of an algebraic variety is a normal ring, then it is analytically irreducible. There are many examples of reduced and irreducible local rings that are analytically reducible, such as the local ring of a node of an irreducible curve, but it is hard to find examples that are also normal. Template:Harvs gave such an example of a normal Noetherian local ring that is analytically reducible.

Nagata's example

Suppose that K is a field of characteristic not 2, and K Template:Brackets is the formal power series ring over K in 2 variables. Let R be the subring of K Template:Brackets generated by x, y, and the elements zn and localized at these elements, where

w=m>0amxm is transcendental over K(x)
z1=(y+w)2
zn+1=(z1(y+0<m<namxm)2)/xn.

Then R[X]/(X 2z1) is a normal Noetherian local ring that is analytically reducible.

References


Template:Commutative-algebra-stub