Al-Salam–Carlitz polynomials

From testwiki
Jump to navigation Jump to search

Template:Distinguish In mathematics, Al-Salam–Carlitz polynomials UTemplate:Su(x;q) and VTemplate:Su(x;q) are two families of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Template:Harvs. Template:Harvs give a detailed list of their properties.

Definition

The Al-Salam–Carlitz polynomials are given in terms of basic hypergeometric functions by

Un(a)(x;q)=(a)nqn(n1)/22ϕ1(qn,x1;0;q,qx/a)
Vn(a)(x;q)=(a)nqn(n1)/22ϕ0(qn,x;;q,qn/a)

References

Further reading

  • Wang, M. (2009). q-integral representation of the Al-Salam–Carlitz polynomials. Applied Mathematics Letters, 22(6), 943-945.
  • Askey, R., & Suslov, S. K. (1993). The q-harmonic oscillator and the Al-Salam and Carlitz polynomials. Letters in Mathematical Physics, 29(2), 123-132.
  • Chen, W. Y., Saad, H. L., & Sun, L. H. (2010). An operator approach to the Al-Salam–Carlitz polynomials. Journal of Mathematical Physics, 51(4).
  • Kim, D. (1997). On combinatorics of Al-Salam Carlitz polynomials. European Journal of Combinatorics, 18(3), 295-302.
  • Andrews, G. E. (2000). Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. Contemporary Mathematics, 254, 45-56.
  • Baker, T. H., & Forrester, P. J. (2000). Multivariable Al–Salam & Carlitz Polynomials Associated with the Type A q–Dunkl Kernel. Mathematische Nachrichten, 212(1), 5-35.